Skip to main content

Introduction to Silicon Photonics

  • Chapter
  • First Online:
Computational Photonic Sensors

Abstract

This chapter reviews the fundamentals of the silicon on insulator (SOI) technology due to its advantages. The chapter starts with an introduction to the SOI followed by the different waveguides based on the SOI technology and their advantages. Further, the novel platforms that have been recently emerging beside the SOI are also presented. Finally, various fabrication processes for performing the SOI wafer are introduced in more detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. G.K. Celler, Silicon-on-insulator structures: fabrication. Encycl. Adv. Mater. (1994)

    Google Scholar 

  2. J.P. Colinge, Soi materials, in Silicon-on-Insulator Technology: Materials to VLSI, 2nd edn. (Springer, US, 1997)

    Chapter  Google Scholar 

  3. B. Aspar, A.J. Auberton-Hervé, Silicon wafer bonding technology for VLSI and MEMS applications, in Inspec, Emis processing, vol. 1 (2002)

    Google Scholar 

  4. A. Marshall, S. Natarajan, SOI Design (Springer Science & Business Media, 2002)

    Google Scholar 

  5. M. Alexe, U. Gösele (eds.), Wafer Bonding: Applications and Technology, vol. 75. (Springer Science & Business Media, 2013)

    Google Scholar 

  6. O. Kononchuk, B.Y. Nguyen, Silicon-on-Insulator (SOI) Technology: Manufacture and Applications (Elsevier, 2014)

    Chapter  Google Scholar 

  7. S.E. Miller, Integrated optics: an introduction. Bell Labs Tech. J. 48(7), 2059–2069 (1969)

    Article  Google Scholar 

  8. G.T. Reed, A.P. Knights, Silicon Photonics: An Introduction (Wiley, 2004)

    Book  Google Scholar 

  9. R. Soref, The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quant. Electron. 12(6), 1678–1687 (2006)

    Article  Google Scholar 

  10. L. Pavesi, D.J. Lockwood (eds.), Silicon Photonics III: Systems and Applications, vol. 122, (Springer Science & Business Media, 2016)

    Google Scholar 

  11. J.N. Polky, G.L. Mitchell, Metal-clad planar dielectric waveguide for integrated optics. JOSA 64(3), 274–279 (1974)

    Article  Google Scholar 

  12. J. Nezval, WKB approximation for optical modes in a periodic planar waveguide. Opt. Commun. 42(5), 320–322 (1982)

    Article  Google Scholar 

  13. H.M. De Ruiter, Limits on the propagation constants of planar optical waveguide modes. Appl. Opt. 20(5), 731–732 (1981)

    Article  Google Scholar 

  14. T. Tamir, Leaky waves in planar optical waveguides. Nouvelle Revue d’Optique 6(5), 273 (1975)

    Article  Google Scholar 

  15. F. Payne, Generalized transverse resonance model for planar optical waveguides, in Tenth European Conference on Optical Communications, ECOC ‘84 (1984)

    Google Scholar 

  16. M. Kawachi, M. Yasu, T. Edahiro, Fabrication of SiO2-TiO2 glass planar optical waveguides by flame hydrolysis deposition. Electron. Lett. 19(15), 583–584 (1983)

    Article  Google Scholar 

  17. O. Hanaizumi, M. Miyagi, S. Kawakami, Low radiation loss Y-junctions in planar dielectric optical waveguides. Opt. Commun. 51(4), 236–238 (1984)

    Article  Google Scholar 

  18. H. Jerominek, Z. Opilski, J. Kadziela, Some elements of integrated-optics circuits based on planar gradient glass waveguides. Opt. Appl. 13(2), 159–168 (1983)

    Google Scholar 

  19. R. Soref, J. Larenzo, All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quant. Electron. 22(6), 873–879 (1986)

    Article  Google Scholar 

  20. R.A. Soref, J.P. Lorenzo, Single-crystal silicon: a new material for 1.3 and 1.6 μm integrated-optical components. Electron. Lett. 21(21), 953–954 (1985)

    Article  Google Scholar 

  21. D.J. Albares, R.A. Soref, Silicon-on-Sapphire waveguides, in Proceedings of SPIE: Integrated Optical Circuit Engineering IV, vol. 704 (1987), pp. 24–25

    Google Scholar 

  22. E. Cortesi, F. Namavar, R.A. Soref, Novel silicon-on-insulator structures for silicon waveguides, in SOS/SOI Technology Conference (IEEE, Oct 1989), p. 109

    Google Scholar 

  23. F. Namavar, E. Cortesi, R.A. Soref, P. Sioshansi, On the formation of thick and multiple layer SIMOX structures and their applications, in Ion Beam Processing of Advanced Electronic Materials Symposium (1989), p. 147

    Google Scholar 

  24. G.T. Reed, L. Jinhua, C.K. Tang, L. Chenglu, P.L.F. Hemment, A.G. Rickman, Silicon on insulator optical waveguides formed by direct wafer bonding. Mater. Sci. Eng., B 15(2), 156–159 (1992)

    Article  Google Scholar 

  25. A.F. Evans, D.G. Hall, W.P. Maszara, Propagation loss measurements in silicon-on-insulator optical waveguides formed by the bond-and-etchback process. Appl. Phys. Lett. 59(14), 1667–1669 (1991)

    Article  Google Scholar 

  26. N.M. Kassim, H.P. Ho, T.M. Benson, D.E. Daveias, Assessment of SIMOX material by optical waveguide losses, in ESSDERC ‘90 on 20th European Solid State Device Research Conference (IEEE, Oct 1990), pp. 5–8

    Google Scholar 

  27. B.L. Weiss, G.T. Reed, The transmission properties of optical waveguides in SIMOX structures. Opt. Quant. Electron. 23(8), 1061–1065 (1991)

    Article  Google Scholar 

  28. D.E. Davies, M. Burnham, T.M. Benson, N.M. Kassim, M. Seifouri, Optical waveguides and SIMOX characterisation, in SOS/SOI Technology Conference (IEEE, Oct 1989), pp. 160–161

    Google Scholar 

  29. R.A. Soref, E. Cortesi, F. Namavar, L. Friedman, Vertically integrated silicon-on-insulator waveguides. IEEE Photonics Technol. Lett. 3(1), 22–24 (1991)

    Article  Google Scholar 

  30. B. Weiss, G. Reed, S. Toh, R. Soref, F. Namavar, Optical waveguides in SIMOX structures. IEEE Photon. Technol. Lett. 3(1), 19–21 (1991)

    Article  Google Scholar 

  31. A. Rickman, G.T. Reed, B.L. Weiss, F. Namavar, Low-loss planar optical waveguides fabricated in SIMOX material. IEEE Photon. Technol. Lett. 4(6), 633–635 (1992)

    Article  Google Scholar 

  32. B.N. Kurdi, D.G. Hall, Optical waveguides in oxygen-implanted buried-oxide silicon-on-insulator structures. Opt. Lett. 13(2), 175–177 (1988)

    Article  Google Scholar 

  33. J. Schmidtchen, A. Splett, B. Schuppert, K. Petermann, Low loss integrated-optical rib-waveguides in SOI, in 1991 IEEE International Proceedings of the SOI Conference (IEEE, 1991), pp. 142–143

    Google Scholar 

  34. A.G. Rickman, G.T. Reed, F. Namavar, Silicon-on-insulator optical rib waveguide loss and mode characteristics. J. Lightwave Technol. 12(10), 1771–1776 (1994)

    Article  Google Scholar 

  35. A.G. Rickman, G.T. Reed, Silicon-on-insulator optical rib waveguides: loss, mode characteristics, bends and y-junctions. IEEE Proc. Optoelectron. 141(6), pp. 391–393 (1994)

    Article  Google Scholar 

  36. C.K. Tang, A.K. Kewell, G.T. Reed, A.G. Rickman, F. Namavar, Development of a library of low-loss silicon-on-insulator optoelectronic devices. IEEE Proc. Optoelectron. 143(5), 312–315 (1996)

    Article  Google Scholar 

  37. A.G. Rickman, G.T. Reed, F. Namavar, Silicon-on-insulator optical rib waveguide circuits for fiber optic sensors. Proc. SPIE Distrib. Multipl. Fiber Opt. Sens. III 2071, 190–196 (1993)

    Google Scholar 

  38. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, D.W. Prather, Fabrication and characterization of three-dimensional silicon tapers. Opt. Express 11(26), 3555–3561 (2003)

    Article  Google Scholar 

  39. Z. Lu, P. Yao, S. Venkataraman, D. Pustai, C. Lin, G. Schneider, J. Murakowski, S. Shi, D.W. Prather, June. Fiber-to-waveguide evanescent coupler for planar integration of silicon optoelectronic devices, in Photonics Packaging and Integration IV, vol. 5358 (International Society for Optics and Photonics, 2004), pp. 102–111

    Google Scholar 

  40. G.Z. Masanovic, V.M. Passaro, G.T. Reed, Dual grating-assisted directional coupling between fibers and thin semiconductor waveguides. IEEE Photonics Technol. Lett. 15(10), 1395–1397 (2003)

    Article  Google Scholar 

  41. V.R. Almeida, R.R. Panepucci, M. Lipson, Nanotaper for compact mode conversion. Opt. Lett. 28(15), 1302–1304 (2003)

    Article  Google Scholar 

  42. M. Lipson, Overcoming the limitations of microelectronics using Si nanophotonics: solving the coupling, modulation and switching challenges. Nanotechnology 15(10), S622 (2004)

    Article  Google Scholar 

  43. T. Shoji, T. Tsuchizawa, T. Watanabe, K. Yamada, H. Morita, Low loss mode size converter from 0.3 µm square Si wire waveguides to singlemode fibres. Electron. Lett. 38(25), 1669–1670 (2002)

    Article  Google Scholar 

  44. K. Petermann, Properties of optical rib-guides with large cross-section. Aeu Int. J. Electron. Commun. 30(3), 139–140 (1976)

    Google Scholar 

  45. R.A. Soref, J. Schmidtchen, K. Petermann, Large single-mode rib waveguides in GeSi-Si and Si-on-SiO/sub 2. IEEE J. Quantum Electron. 27(8), 1971–1974 (1991)

    Article  Google Scholar 

  46. S.P. Pogossian, L. Vescan, A. Vonsovici, The single-mode condition for semiconductor rib waveguides with large cross section. J. Lightwave Technol. 16(10), 1851–1853 (1998)

    Article  Google Scholar 

  47. O. Powell, Single-mode condition for silicon rib waveguides. J. Lightwave Technol. 20(10), 1851–1855 (2002)

    Article  Google Scholar 

  48. O. Powell, Erratum to: Single-mode condition for silicon rib waveguides. J. Lightwave Technol. 21(3), 868 (2003)

    Article  Google Scholar 

  49. S.P. Chan, C.E. Png, S.T. Lim, G.T. Reed, V.M.N. Passaro, Single mode, polarisation independent waveguides in silicon-on-insulator. in 2004 Ist IEEE International Conference on Group Iv Photonics, Jan 2004 (pp. 115–117)

    Google Scholar 

  50. T. Tsuchizawa, K. Yamada, H. Fukuda, T. Watanabe, J.I. Takahashi, M. Takahashi, T. Shoji, E. Tamechika, S.I. Itabashi, H. Morita, Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11(1), 232–240 (2005)

    Article  Google Scholar 

  51. H. Yamada, T. Chu, S. Ishida, Y. Arakawa, Si photonic wire waveguide devices. IEEE J. Sel. Top. Quantum Electron. 12(6), 1371–1379 (2006)

    Article  Google Scholar 

  52. T. Chu, H. Yamada, S. Nakamura, M. Ishizaka, M. Tokushima, Y. Urino, S. Ishida, Y. Arakawa, Ultra-small silicon photonic wire waveguide devices. IEICE Trans. Electron. 92(2), 217–223 (2009)

    Article  Google Scholar 

  53. V.R. Almeida, Q. Xu, C.A. Barrios, M. Lipson, Guiding and confining light in void nanostructure. Opt. Lett. 29(11), 1209–1211 (2004)

    Article  Google Scholar 

  54. Q. Xu, V.R. Almeida, R.R. Panepucci, M. Lipson, Experimental demonstration of guiding and confining light in nanometer-size low-refractive-index material. Opt. Lett. 29(14), 1626–1628 (2004)

    Article  Google Scholar 

  55. https://www.comsol.com/

  56. X. Tu, X. Xu, S. Chen, J. Yu, Q. Wang, Simulation demonstration and experimental fabrication of a multiple-slot waveguide. IEEE Photonics Technol. Lett. 20(5), 333–335 (2008)

    Article  Google Scholar 

  57. E. Jordana, J.M. Fedeli, P. Lyan, J.P. Colonna, P. Gautier, N. Daldosso, L. Pavesi, Y. Lebour, P. Pellegrino, B. Garrido, J. Blasco, Deep-UV lithography fabrication of slot waveguides and sandwiched waveguides for nonlinear applications. in 2007 4th IEEE International Conference on Group IV Photonics (IEEE, Sept 2007), pp. 1–3

    Google Scholar 

  58. C.A. Barrios, High-performance all-optical silicon microswitch. Electron. Lett. 40(14), 862–863 (2004)

    Article  Google Scholar 

  59. C.A. Barrios, M. Lipson, Electrically driven silicon resonant light emitting device based on slot-waveguide. Opt. Express 13(25), 10092–10101 (2005)

    Article  Google Scholar 

  60. M.F.O. Hameed, R. Zaghloul, S.I. Azzam, S.S. Obayya, Ultrashort hybrid plasmonic transverse electric pass polarizer for silicon-on-insulator platform. Opt. Eng. 56(1), 017107–017107 (2017)

    Article  Google Scholar 

  61. M.F.O. Hameed, A.S. Saadeldin, E.M. Elkaramany, S.S. Obayya, label-free highly sensitive hybrid plasmonic biosensor for the detection of DNA hybridization. J. Lightwave Technol. 35(22), 4851–4858 (2017)

    Article  Google Scholar 

  62. J. Chiles, S. Fathpour, Silicon photonics beyond silicon-on-insulator. J. Opt. 19(5), 053001 (2017)

    Article  Google Scholar 

  63. B.J. Eggleton, B. Luther-Davies, K. Richardson, Chalcogenide photonics. Nat. Photonics 5(3), 141–148 (2011)

    Article  Google Scholar 

  64. Y.C. Chang, V. Paeder, L. Hvozdara, J.M. Hartmann, H.P. Herzig, Low-loss germanium strip waveguides on silicon for the mid-infrared. Opt. Lett. 37(14), 2883–2885 (2012)

    Article  Google Scholar 

  65. D.F. Logan, M. Giguere, A. Villeneuve, A.S. Helmy, Widely tunable mid-infrared generation via frequency conversion in semiconductor waveguides. Opt. Lett. 38(21), 4457–4460 (2013)

    Article  Google Scholar 

  66. P. Tai Lin, V. Singh, L. Kimerling, A. Murthy Agarwal, Planar silicon nitride mid-infrared devices. Appl. Phys. Lett. 102(25), 251121 (2013)

    Article  Google Scholar 

  67. R. Kitamura, L. Pilon, M. Jonasz, Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl. Opt. 46(33), 8118–8133 (2007)

    Article  Google Scholar 

  68. A. Sciuto, A. Alessandria, S. Libertino, S. Coffa, G. Coppola, Design, fabrication, and testing of an integrated Si-based light modulator: experimental evidence of plasma redistribution. in Symposium on Integrated Optoelectronic Devices (International Society for Optics and Photonics, Mar 2002), pp. 54–61

    Google Scholar 

  69. R. Soref, J. Larenzo, All-silicon active and passive guided-wave components for λ = 1.3 and 1.6 µm. IEEE J. Quant. Electron. 22(6), 873–879 (1986)

    Article  Google Scholar 

  70. H.M. Manasevit, W.I. Simpson, Single-Crystal Silicon on a Sapphire Substrate. J. Appl. Phys. 35(4), 1349–1351 (1964)

    Article  Google Scholar 

  71. M. Roser, S.R. Clayton, P.R. de La Houssaye, G.A. Garcia, High-mobility fully depleted thin-film SOS MOSFET’s. IEEE Trans. Electron Devices 39(11), 2665–2666 (1992)

    Article  Google Scholar 

  72. E. Culurciello, Silicon-on-sapphire circuits and systems (McGraw-Hill Inc., 2009)

    Google Scholar 

  73. T. Baehr-Jones, A. Spott, R. Ilic, A. Spott, B. Penkov, W. Asher, M. Hochberg, Silicon-on-sapphire integrated waveguides for the mid-infrared. Opt. Express 18(12), 12127–12135 (2010)

    Article  Google Scholar 

  74. E.R. Dobrovinskaya, L.A. Lytvynov, V. Pishchik, Sapphire: Material, Manufacturing, Applications (Springer Science & Business Media, 2009)

    Google Scholar 

  75. F. Li, S.D. Jackson, C. Grillet, E. Magi, D. Hudson, S.J. Madden, Y. Moghe, C. O’Brien, A. Read, S.G. Duvall, P. Atanackovic, Low propagation loss silicon-on-sapphire waveguides for the mid-infrared. Opt. Express 19(16), 15212–15220 (2011)

    Article  Google Scholar 

  76. Z. Cheng, X. Chen, C.Y. Wong, K. Xu, C.K. Fung, Y.M. Chen, H.K. Tsang, Mid-infrared grating couplers for silicon-on-sapphire waveguides. IEEE Photonics J. 4(1), 104–113 (2012)

    Article  Google Scholar 

  77. Y. Zou, S. Chakravarty, P. Wray, R.T. Chen, Experimental demonstration of propagation characteristics of mid-infrared photonic crystal waveguides in silicon-on-sapphire. Opt. Express 23(5), 6965–6975 (2015)

    Article  Google Scholar 

  78. Y. Zou, S. Chakravarty, R.T. Chen, Mid-infrared silicon-on-sapphire waveguide coupled photonic crystal microcavities. Appl. Phys. Lett. 107(8), 081109 (2015)

    Article  Google Scholar 

  79. Y. Zou, S. Chakravarty, P. Wray, R.T. Chen, Mid-infrared holey and slotted photonic crystal waveguides in silicon-on-sapphire for chemical warfare simulant detection. Sens. Actuator B Chem. 221, 1094–1103 (2015)

    Article  Google Scholar 

  80. Y. Yue, L. Zhang, H. Huang, R.G. Beausoleil, A.E. Willner, Silicon-on-nitride waveguide with ultralow dispersion over an octave-spanning mid-infrared wavelength range. IEEE Photonics J. 4(1), 126–132 (2012)

    Article  Google Scholar 

  81. S. Khan, J. Chiles, J. Ma, S. Fathpour, Silicon-on-nitride waveguides for mid-and near-infrared integrated photonics. Appl. Phys. Lett. 102(12), 121104 (2013)

    Article  Google Scholar 

  82. Y. Zou, H. Subbaraman, S. Chakravarty, X. Xu, A. Hosseini, W.C. Lai, P. Wray, R.T. Chen, Grating-coupled silicon-on-sapphire integrated slot waveguides operating at mid-infrared wavelengths. Opt. Lett. 39(10), 3070–3073 (2014)

    Article  Google Scholar 

  83. Y. Chen, H. Lin, J. Hu, M. Li, Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing. ACS Nano 8(7), 6955–6961 (2014)

    Article  Google Scholar 

  84. G.K. Celler, S. Cristoloveanu, Frontiers of silicon-on-insulator. J. Appl. Phys. 93(9), 4955–4978 (2003)

    Article  Google Scholar 

  85. Q.Y. Tong, U. Goesele, Semiconductor Wafer Bonding: Science and Technology (Wiley, 1999)

    Google Scholar 

  86. F. Namavar, E. Cortesi, B. Buchanan, P. Sioshansi, Proceedings of IEEE SOS/SOI Technology Workshop (1989), p. 117

    Google Scholar 

  87. T. Abe, M. Nakano, T. Ito, Silicon-On-insulator Technology and Devices, vol. 61, ed. by D.N. Schmidt (The Electrochemical Society, Pennington, New Jersey, 1990), pp. 90–96

    Google Scholar 

  88. K. Mitani, U.M. Gösele, Wafer bonding technology for silicon-on-insulator applications: a review. J. Electron. Mater. 21(7), 669–676 (1992)

    Article  Google Scholar 

  89. O. Kononchuk, B.Y. Nguyen, Silicon-on-insulator (SOI) Technology: Manufacture and Applications (Elsevier, 2014)

    Chapter  Google Scholar 

  90. A. Marshall, S. Natarajan, SOI Design (Springer Science & Business Media, 2002)

    Google Scholar 

  91. P. Mumola, G. Gardopee, T. Feng, A. Ledger, P. Clapis, P. Miller, Proceedings of the Semiconductor Wafer Bonding: Science, Technology and Applications, vol. 410, ed. by M.A. Schmidt, T. Abe, C.E. Hunt, H. Baumgart (The Electrochemical Socity, Pennington, New Jersey, 1993), pp. 93–29

    Google Scholar 

  92. K. Mitani, SEMI Silicon on insulator (SOI), Manufacturing technology. Semicon. West 98, H1 (1998)

    Google Scholar 

  93. D. Godbey, H. Hughes, F. Kub, M. Twigg, L. Palkuti, P. Leonov, J. Wang, A SiO. 7GeO. 3 strained-layer etch stop for the generation of thin layer undoped silicon. Appl. Phys. Lett. 56(4), 373–375 (1990)

    Article  Google Scholar 

  94. T. Yonehara, Silicon Wafer Bonding Technology for VLSI and MEMS Applications, in EMIS Processing Series n° 1, Chapter 4, vol. 53, ed. by S.S. Iyer, A.J. Auberton-Herve (2002)

    Google Scholar 

  95. T. Yonehara, ELTRAN; novel SOI wafer technology. JSAP Int. 4, 10–16 (2001)

    Google Scholar 

  96. R.S. Burton, T.E. Schlesinger, Comparative analysis of the method-of-lines for three-dimensional curved dielectric waveguides. J. Lightwave Technol. 14(2), 209–216 (1996)

    Article  Google Scholar 

  97. N. Dagli, C. Fonstad, Analysis of rib dielectric waveguides. IEEE J. Quant. Electron. 21(4), 315–321 (1985)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Farhat O. Hameed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hameed, M.F.O., Saadeldin, A.S., Elkaramany, E.M.A., Obayya, S.S.A. (2019). Introduction to Silicon Photonics. In: Hameed, M., Obayya, S. (eds) Computational Photonic Sensors. Springer, Cham. https://doi.org/10.1007/978-3-319-76556-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-76556-3_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-76555-6

  • Online ISBN: 978-3-319-76556-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics