Skip to main content
Log in

Concentration and distribution of entanglement based on valley qubits system in graphene

  • Article
  • Physics & Astronomy
  • Published:
Science Bulletin

Abstract

Exploiting the optical excitation selection rules in graphene quantum dots, we investigate theoretically the entanglement generation process and entanglement concentration process of valley qubits. Our protocol shows that the graphene-based quantum dots can be distributed in a maximally entangled state through the interaction with single photons. In our proposed scheme, the setups are simplified as only single-photon detection is required. This provides a fast, all-optical manipulation of on-chip qubits, which gives an effective way for quantum information processing in graphene-based solid qubits.

摘要

基于石墨烯量子点系统中光激发选择规则, 我们提出了一个纠缠产生和浓缩的理论方案。利用量子点系统与单光子的相互作用, 方案可以在石墨烯量子点系统中实现最大纠缠态的纠缠分发。方案的实现装置依赖于单光子探测过程, 简化了纠缠分发过程。该方案提供了基于片上量子比特的快速、全光操控方法, 可以被应用到石墨烯量子比特信息处理的方案中。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. DiVincenzo DP (2000) The physical implementation of quantum computation. Fortschr Phys 48:771–783

    Article  Google Scholar 

  2. Wineland D, Blatt R (2008) Entangled states of trapped atomic ions. Nature 453:1008–1014

    Article  Google Scholar 

  3. Man ZX, Su F, Xia YJ (2013) Stationary entanglement of two atoms in a common reservoir. Chin Sci Bull 58:2423–2429

    Article  Google Scholar 

  4. Ma J, Li Y, Wu J et al (2014) Laser intensity induced transparency in atom-molecular transition process. Chin Sci Bull 59:2731–2735

    Article  Google Scholar 

  5. Nakamura Y, Pashkin YA, Tsai JS (1999) Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature 398:786–788

    Article  Google Scholar 

  6. Hanson R, Kouwenhoven LP, Petta JR et al (2007) Spins in few-electron quantum dots. Rev Mod Phys 79:1217–1265

    Article  Google Scholar 

  7. Gaebel T, Domhan M, Popa I et al (2006) Room-temperature coherent coupling of single spins in diamond. Nat Phys 2:408–413

    Article  Google Scholar 

  8. Castro NAH, Guinea F, Peres NMR et al (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162

    Article  Google Scholar 

  9. Rycerz A, Tworzydlo J, Beenakker CW (2007) Valley filter and valley valve in graphene. Nat Phys 3:172–175

    Article  Google Scholar 

  10. Rohling N, Burkard G (2012) Universal quantum computing with spin and valley. New J Phys 14:083008

    Article  Google Scholar 

  11. Wu GY, Lue NY, Chang L (2011) Graphene quantum dots for valley-based quantum computing: a feasibility study. Phys Rev B 84:195463

    Article  Google Scholar 

  12. Wu GY, Lue NY (2012) Graphene-based qubits in quantum communications. Phys Rev B 86:045456

    Article  Google Scholar 

  13. Julsgaard B, Sherson J, Cirac JI et al (2004) Experimental demonstration of quantum memory for light. Nature 432:482–486

    Article  Google Scholar 

  14. Duan LM, Lukin MD, Cirac JI et al (2001) Long-distance quantum communication with atomic ensembles and linear optics. Nature 414:413–418

    Article  Google Scholar 

  15. Cao DY, Liu BH, Wang Z et al (2015) Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci Bull 60:1128–1132

    Article  Google Scholar 

  16. Bennett CH, Bernstein HJ, Popescu S et al (1996) Concentrating partial entanglement by local operations. Phys Rev A 53:2046–2052

    Article  Google Scholar 

  17. Yamamoto T, Koashi M, Imoto N (2001) Concentration and purification scheme for two partially entangled photon pairs. Phys Rev A 64:012304

    Article  Google Scholar 

  18. Zhao Z, Yang T, Chen YA et al (2003) Experimental realization of entanglement concentration and a quantum repeater. Phys Rev Lett 90:207901

    Article  Google Scholar 

  19. Yamamoto T, Koashi M, Ozdemir SK et al (2003) Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421:343–346

    Article  Google Scholar 

  20. Sheng YB, Deng FG, Zhou HY (2008) Nonlocal entanglement concentration scheme for partially entangled multipartite systems with nonlinear optics. Phys Rev A 77:062325

    Article  Google Scholar 

  21. Sheng YB, Zhou L, Zhao SM et al (2012) Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys Rev A 85:012307

    Article  Google Scholar 

  22. Deng FG (2012) Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys Rev A 85:022311

    Article  Google Scholar 

  23. Sheng YB, Pan J, Guo R et al (2015) Efficient N-particle W state concentration with different parity check gates. Sci China Phys Mech Astron 58:060301

    Article  Google Scholar 

  24. Du FF, Deng FG (2015) Heralded entanglement concentration for photon systems with linear-optical elements. Sci China Phys Mech Astron 58:040303

    Google Scholar 

  25. Sheng YB, Liu J, Zhao SM et al (2013) Multipartite entanglement concentration for nitrogen-vacancy center and microtoroidal resonator system. Chin Sci Bull 58:3507–3513

    Article  Google Scholar 

  26. Wang HF, Sun LL, Zhang S et al (2012) Scheme for entanglement concentration of unknown partially entangled three-atom W states in cavity QED. Quantum Inf Process 11:431–441

    Article  Google Scholar 

  27. Zhang R, Zhou SH, Cao C (2014) Efficient nonlocal two-step entanglement concentration protocol for three-level atoms in an arbitrary less-entangled W state using cavity input-output process. Sci China Phys Mech Astron 57:1511–1518

    Article  Google Scholar 

  28. Maimaiti W, Li Z, Chesi S et al (2015) Entanglement concentration with strong projective measurement in an optomechanical system. Sci China Phys Mech Astron 58:050309

    Article  Google Scholar 

  29. Emary C, Trauzettel B, Beenakker CWJ (2005) Emission of polarization-entangled microwave photons from a pair of quantum dots. Phys Rev Lett 95:127401

    Article  Google Scholar 

  30. Budich J, Trauzettel B (2010) Entanglement transfer from electrons to photons in quantum dots: an open quantum system approach. Nanotechnology 21:274001

    Article  Google Scholar 

  31. Fischer J, Trauzettel B, Loss D (2009) Hyperfine interaction and electron-spin decoherence in graphene and carbon nanotube quantum dots. Phys Rev B 80:155401

    Article  Google Scholar 

  32. Lansbergen GP, Rahman R, Verduijn J et al (2011) Lifetime-enhanced transport in silicon due to spin and valley blockade. Phys Rev Lett 107:136602

    Article  Google Scholar 

  33. Deng GW, Wei D, Li SX et al (2014) Coupling two distant double quantum dots to a microwave resonator. arXiv:1409.4980

  34. Wei HR, Deng FG (2013) Universal quantum gates for hybrid systems assisted by quantum dots inside double-sided optical microcavities. Phys Rev A 87:022305

    Article  Google Scholar 

  35. Sarandy MS, Lidar DA (2005) Adiabatic quantum computation in open systems. Phys Rev Lett 95:250503

    Article  Google Scholar 

  36. Feng GR, Xu GF, Long GL (2013) Experimental realization of nonadiabatic Holonomic quantum computation. Phys Rev Lett 110:190501

    Article  Google Scholar 

  37. Cao Y, Li H, Long GL (2013) Entanglement of linear cluster states in terms of averaged entropies. Chin Sci Bull 58:48–52

    Article  Google Scholar 

  38. Guo Y, Hou JC (2013) Entanglement detection beyond the CCNR criterion for infinite-dimensions. Chin Sci Bull 58:1250–1255

    Article  Google Scholar 

  39. Su XL (2014) Applying Gaussian quantum discord to quantum key distribution. Chin Sci Bull 59:1083–1090

    Article  Google Scholar 

  40. Wang C (2012) Efficient entanglement concentration for partially entangled electrons using a quantum-dot and microcavity coupled system. Phys Rev A 86:012323

    Article  Google Scholar 

  41. Sheng YB, Zhou L, Wang L et al (2013) Efficient entanglement concentration for quantum dot and optical microcavities systems. Quantum Inf Process 12:1885–1895

    Article  Google Scholar 

  42. Lidar DA, Chuang IL, Whaley KB (1998) Decoherence-free subspaces for quantum computation. Phys Rev Lett 81:2594–2597

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (11404031, 61205117, and 61471050), Beijing Higher Education Young Elite Teacher Project (YETP0456), the Fundamental Research Funds for the Central Universities (2014RC0903), and the State Key Laboratory of Information Photonics and Optical Communications (Beijing University of Posts and Telecommunications).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tie-Jun Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Shen, WW., Mi, SC. et al. Concentration and distribution of entanglement based on valley qubits system in graphene. Sci. Bull. 60, 2016–2021 (2015). https://doi.org/10.1007/s11434-015-0941-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0941-6

Keywords

Navigation