Skip to main content
Log in

Assessment of two different optimization principles applied in heat conduction

导热问题中两种优化原则的评价

  • Article
  • Engineering Sciences
  • Published:
Science Bulletin

Abstract

Optimization principles play a crucial role in the intensification of the heat-transfer process. In this study, we assess and compare two principles, i.e., the entransy dissipation extremum (EDE) principle and the minimum entropy generation (MEG) principle, used in a typical “area to point” heat conduction problem solved via a cellular automaton algorithm. The simulated results indicate that both rules can ameliorate the tree-network conductive path, leading to a more uniform thermal field and lower average and maximum temperatures. In contrast to the MEG principle, the EDE principle is more appropriate to be linked to the algorithm when dealing with the “area to point” heat conduction optimization, especially with a higher conductivity ratio, k p/k 0, between the high conductivity material and the low conductivity material and the fraction of high conductivity, ϕ 0. With the analysis of total entransy dissipation rate and entropy generation of the domain optimized by two principles, the results indicate that the EDE principle is more suitable for the heat-transfer processes without heat–work conversion. Moreover, optimization via reducing the total entransy dissipation rate exhibits better performance in decreasing the equivalent resistance theoretically.

摘要

优化原则对于传热过程强化十分重要。本文针对火积耗散极值原则(EDE)以及最小熵产原则(MEG)两种优化原则在 “面-点”导热问题中的应用进行了评价和比较。该过程采用格子气自动机算法进行模拟。结果表明,两种优化原则均可改善其树状网络结构的导热路径,并导致温度分布更加均匀以及平均温度及最大温度的降低。在该算法下,EDE原则更加适用于处理该“面-点”导热优化问题,特别是在导热比k p /k 0和高导热材料分率ϕ 0较大的情况下。针对总火积耗散率及熵产的分析结果表明,EDE原则更加适用于没有热功转换的传热过程优化。此外,降低总火积耗散率可以降低传热过程的等价热阻,因而表现出更好的传热性能。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bejan A (1979) A study of entropy generation in fundamentals convective heat transfer. J Heat Transf 101:718–725

    Article  Google Scholar 

  2. Bejan A (1982) Entropy generation through heat and fluid flow. Wiley, New York, pp 118–134

    Google Scholar 

  3. Bejan A (1982) Second-law analysis in heat transfer and thermal design. Adv Heat Transf 15:1–58

    Article  Google Scholar 

  4. Bertola V, Cafaro E (2008) A critical analysis of the minimum entropy production theorem and its application to heat and fluid flow. Int J Heat Mass Transf 51:1907–1912

    Article  Google Scholar 

  5. Hesselgreaves JE (2000) Rationalisation of second law analysis of heat exchangers. Int J Heat Mass Transf 43:4189–4204

    Article  Google Scholar 

  6. Shah RK, Skiepko T (2004) Entropy generation extrema and their relationship with heat exchanger effectiveness—number of transfer unit behavior for complex flow arrangements. J Heat Transf 126:994–1002

    Article  Google Scholar 

  7. Guo ZY, Zhu HY, Liang XG (2007) Entransy—a physical quantity describing heat transfer ability. Int J Heat Mass Transf 50:2545–2556

    Article  Google Scholar 

  8. San JY, Worek WM, Lavan Z (1987) Entropy generation in convective heat transfer and isothermal convective mass transfer. J Heat Transf 109:647–652

    Article  Google Scholar 

  9. Tondeur D, Kvaalen E (1987) Equipartition of entropy production. An optimality criterion for transfer and separation processes. Ind Eng Chem Res 26:50–56

    Article  Google Scholar 

  10. Li Q, Yuan XG, Neveu P et al (2014) A novel optimization approach to convective heat transfer enhancement for solar receiver. Chem Eng Sci 116:806–816

    Article  Google Scholar 

  11. Ordonez JC, Bejan A (2000) Entropy generation minimization in parallel-plates counterflow heat exchangers. Int J Energy Res 24:843–864

    Article  Google Scholar 

  12. Azoumah Y, Neveu P, Mazet N (2006) Constructal design combined with entropy generation minimization for solid–gas reactors. Int J Therm Sci 45:716–728

    Article  Google Scholar 

  13. Johannessen E, Kjelstrup S (2005) A highway in state space for reactors with minimum entropy production. Chem Eng Sci 60:3347–3361

    Article  Google Scholar 

  14. Johannessen E, Kjelstrup S (2005) Numerical evidence for a “highway in state space” for reactors with minimum entropy production. Chem Eng Sci 60:1491–1495

    Article  Google Scholar 

  15. David B, Ramousse J, Luo L (2014) Optimization of thermoelectric heat pumps by operating condition management and heat exchanger design. Energy Convers Manag 60:125–133

    Article  Google Scholar 

  16. Jankowski TA (2009) Minimizing entropy generation in internal flows by adjusting the shape of the cross-section. Int J Heat Mass Transf 52:3439–3445

    Article  Google Scholar 

  17. Ratts EB, Raut AG (2004) Entropy generation minimization of fully developed internal flow with constant heat flux. J Heat Transf 126:656–659

    Article  Google Scholar 

  18. Tarlet D, Fan YL, Roux S et al (2014) Entropy generation analysis of a mini heat exchanger for heat transfer intensification. Exp Therm Fluid Sci 53:119–126

    Article  Google Scholar 

  19. Chen LG, Wei SH, Sun FR (2008) Constructal entransy dissipation minimization for “volume-point” heat conduction. J Phys D Appl Phys 41:195506

    Article  Google Scholar 

  20. Wei SH, Chen LG, Sun FR (2008) “Volume-point” heat conduction constructal optimization with entransy dissipation minimization objective based on rectangular element. Sci China Ser E Technol Sci 51:1283–1295

    Article  Google Scholar 

  21. Cheng XT, Liang XG, Guo ZY (2011) Entransy decrease principle of heat transfer in an isolated system. Chin Sci Bull 56:847–854

    Article  Google Scholar 

  22. Açıkkalp E (2014) Entransy analysis of irreversible heat pump using Newton and Dulong–Petit heat transfer laws and relations with its performance. Energy Convers Manag 86:792–800

    Article  Google Scholar 

  23. Feng HJ, Chen LG, Xie ZH et al (2014) Constructal entransy optimizations for insulation layer of steel rolling reheating furnace wall with convective and radiative boundary conditions. Chin Sci Bull 59:2470–2477

    Article  Google Scholar 

  24. Feng HJ, Chen LG, Xie ZH et al (2014) Generalized constructal optimization for the secondary cooling process of slab continuous casting based on entransy theory. Sci China Technol Sci 57:784–795

    Article  Google Scholar 

  25. Yang AB, Chen LG, Xia SJ et al (2014) The optimal configuration of reciprocating engine based on maximum entransy loss. Chin Sci Bull 59:2031–2038

    Article  Google Scholar 

  26. Chen LG (2014) Progress in optimization of mass transfer processes based on mass entransy dissipation extremum principle. Sci China Technol Sci 57:2305–2327

    Article  Google Scholar 

  27. Chen Q, Wang M, Pan N et al (2009) Optimization principles for convective heat transfer. Energy 34:1199–1206

    Article  Google Scholar 

  28. Chen L, Chen Q, Li Z et al (2009) Optimization for a heat exchanger couple based on the minimum thermal resistance principle. Int J Heat Mass Transf 52:4778–4784

    Article  Google Scholar 

  29. Cheng XT, Liang XG (2013) Analyses of entropy generation and heat entransy loss in heat transfer and heat–work conversion. Int J Heat Mass Transf 64:903–909

    Article  Google Scholar 

  30. Wang WH, Cheng XT, Liang XG (2013) Analyses of the endoreversible Carnot cycle with entropy theory and entransy theory. Chin Phys B 22:110506

    Article  Google Scholar 

  31. Cheng XT, Liang XG (2013) Entransy and entropy analyses of heat pump systems. Chin Sci Bull 58:4696–4702

    Article  Google Scholar 

  32. Cheng XT, Liang XG (2014) Entransy: its physical basis, applications and limitations. Chin Sci Bull 59:5309–5323

    Article  Google Scholar 

  33. Bejan A, Lorente S (2006) Constructal theory of generation of configuration in nature and engineering. J Appl Phys 100:041301

    Article  Google Scholar 

  34. Bejan A (1997) Constructal-theory network of conducting paths for cooling a heat generating volume. Int J Heat Mass Transf 40:799–816

    Article  Google Scholar 

  35. Rocha LAO, Lorente S, Bejan A (2002) Constructal design for cooling a disc-shaped area by conduction. Int J Heat Mass Transf 45:1643–1652

    Article  Google Scholar 

  36. Yao WJ, Cao BY (2014) Thermal wave propagation in graphene studied by molecular dynamics simulations. Chin Sci Bull 59:3495–3503

    Article  Google Scholar 

  37. Wu WJ, Chen LG, Sun FR (2007) On the “area to point” flow problem based on constructal theory. Energy Convers Manag 48:101–105

    Article  Google Scholar 

  38. Ghodoossi L (2004) Conceptual study on constructal theory. Energy Convers Manag 45:1379–1395

    Article  Google Scholar 

  39. Ghodoossi L, Egrican N (2004) Conductive cooling of triangular shaped electronics using constructal theory. Energy Convers Manag 45:811–828

    Article  Google Scholar 

  40. Zhou SB, Chen LG, Sun FR (2007) Optimization of constructal volume-point conduction with variable cross-section conducting path. Energy Convers Manag 48:106–111

    Article  Google Scholar 

  41. Lorenzini G, Rocha LAO (2006) Constructal design of Y-shaped assembly of fins. Int J Heat Mass Transf 49:4552–4557

    Article  Google Scholar 

  42. Cheng XG, Xia ZZ, Li ZX (2002) Optimization of heat conduction: thermal dissipation and optimal thermal conductivity distribution. J Eng Thermophys 23:715–717

    Google Scholar 

  43. Xu XH, Liang XG, Ren JX (2007) Optimization of heat conduction using combinatorial optimization algorithms. Int J Heat Mass Transf 50:1675–1682

    Article  Google Scholar 

  44. Boichot R, Luo L, Fan YL (2009) Tree-network structure generation for heat conduction by cellular automaton. Energy Convers Manag 50:376–386

    Article  Google Scholar 

  45. Boichot R, Luo L (2010) A simple cellular automaton algorithm to optimize heat transfer in complex configurations. Int J Exergy 7:51–64

    Article  Google Scholar 

  46. Guo K, Qi WZ, Liu BT et al (2016) Optimization of an “area to point” heat conduction problem. Appl Therm Eng 93:61–71

    Article  Google Scholar 

  47. Wolfram S (2002) A new kind of science. Wolfram Media, Champaign

    Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (2012CB720500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunjiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, W., Guo, K., Liu, H. et al. Assessment of two different optimization principles applied in heat conduction. Sci. Bull. 60, 2041–2053 (2015). https://doi.org/10.1007/s11434-015-0938-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-015-0938-1

Keywords

关键词

Navigation