Skip to main content
Log in

LBE–DEM simulation of inter-phase heat transfer in gas–solid cross jets

  • Article
  • Engineering Thermophysics
  • Published:
Chinese Science Bulletin

Abstract:

Lattice-Boltzmann equation (LBE)–Discrete element method (DEM) coupled simulation of a two-dimensional gas–solid cross jet is performed, focusing on the gas-particle two-way coupling effect on heat transfer characteristics. The Reynolds number is 1000, and particle Stokes numbers are 10, 25, and 50 under the same number flow rate of particles. The gas phase temperature field and particle distribution as well as the inter-phase heat transfer characteristics are studied and analyzed. The dominating effects, i.e. the mean temperature difference and mean heat transfer coefficient between the gas–solid phases, for the pre- and post- collision stages of the cross jets are illustrated respectively. The change of dominating roles is related to the dynamical response characteristics of particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Bradbury LJS (1965) The structure of a self-preserving turbulent plane jet. J Fluid Mech 23:31–64

    Article  Google Scholar 

  2. Andreopoulos J, Rodi W (1984) Experimental investigation of jets in a crossflow. J Fluid Mech 138:93–127

    Article  Google Scholar 

  3. Abdel-Fattah A (2011) Numerical simulation of isothermal flow in axisymmetric turbulent opposed jets. Aero Sci Technol 15:283–292

    Article  Google Scholar 

  4. Rudman M (1996) Simulation of the near field of a jet in a cross flow. Exp Therm Fluid Sci 12:134–141

    Article  Google Scholar 

  5. Cavar D, Meyer KE (2012) LES of turbulent jet in cross flow: part 2-POD analysis and identification of coherent structures. Int J Heat Fluid Flow 36:35–46

    Article  Google Scholar 

  6. Muldoon F, Acharya S (2010) Direct numerical simulation of pulsed jets-in-crossflow. Comput Fluids 39:1745–1773

    Article  Google Scholar 

  7. Gao ZX, Lee CH (2011) Numerical research on mixing characteristics of different injection schemes for supersonic transverse jet. Sci China Technol Sci 54:883–893

    Article  Google Scholar 

  8. Wegner B, Huai Y, Sadiki A (2004) Comparative study of turbulent mixing in jet in cross-flow configurations using LES. Int J Heat Fluid Flow 25:767–775

    Article  Google Scholar 

  9. Grout RW, Gruber A, Yoo CS et al (2011) Direct numerical simulation of flame stabilization downstream of a transverse fuel jet in cross-flow. Proc Combust Inst 33:1629–1637

    Article  Google Scholar 

  10. Wu K, Wei X, Zhang XG et al (2003) Fundamental research on the cross double lance for PCI at blast furnace. J Univ Sci Technol Beijing 25:515–519

    Google Scholar 

  11. Han CY, Xu MH, Hu PF (1992) Study on the aerodynamics of orthogonal jet type flame stabilizers. Power Eng 12:25–31

    Google Scholar 

  12. Fernandes RLJ, Sobiesiak A, Pollard A (1996) Opposed round jets issuing into a small aspect ratio channel cross flow. Exp Therm Fluid Sci 13:374–394

    Article  Google Scholar 

  13. Kashkousha MM, Kamal AM, Abdulaziz MA (2012) Nosier, Concentric elliptical jet diffusion flames with co- and cross-flows. Exp Therm Fluid Sci 41:177–187

    Article  Google Scholar 

  14. Ahmed S, Hart J, Nikolov J et al (2007) The effect of jet velocity ratio on aerodynamics of a rectangular slot-burner in the presence of cross-flow. Exp Therm Fluid Sci 32:362–374

    Article  Google Scholar 

  15. Eppinger T, Seidler K, Kraume M (2011) DEM-CFD simulations of fixed bed reactors with small tube to particle diameter ratios. Chem Eng J 166:324–331

    Article  Google Scholar 

  16. Fries L, Antonyuk S, Heinrich S et al (2011) DEM–CFD modeling of a fluidized bed spray granulator. Chem Eng Sci 66:2340–2355

    Article  Google Scholar 

  17. Natsui S, Ueda S, Nogami H et al (2012) Gas–solid flow simulation of fines clogging a packed bed using DEM-CFD. Chem Eng Sci 71:274–282

    Article  Google Scholar 

  18. Gui N, Fan JR (2009) Numerical simulation of pulsed fluidized bed with immersed tubes using DEM–LES coupling method. Chem Eng Sci 64:2590–2598

    Article  Google Scholar 

  19. Gui N, Fan JR, Chen S (2010) Numerical study of particle–particle collision in swirling jets: A DEM–DNS coupling simulation. Chem Eng Sci 65:3268–3278

    Article  Google Scholar 

  20. He YL, Wang Y, Li Q (2009) Lattice Boltzmann method: theory and applications. Science Press, Beijing

    Google Scholar 

  21. Sun MY, Ji ZL (2008) Parallel computing of gas flow through ceramic filter by using lattice Boltzmann method. J Chem Ind Eng (Chin) 61:1423–1430

    Google Scholar 

  22. Guo ZL, Shi BC, Zheng CG (2002) A coupled lattice BGK model for the Boussinesq equations. Int J Numer Methods Fluids 39:325–342

    Article  Google Scholar 

  23. Toschi F, Amati G, Succi S et al (1999) Intermittency and structure functions in channel flow turbulence. Phys Rev Lett 82:5044–5047

    Article  Google Scholar 

  24. Hou S, Sterling J (1996) A lattice Boltzmann sub-grid model for high Reynolds number flows. Fields Inst Comm 6:151–166

    Google Scholar 

  25. Hoomans BPB, Kuipers JAM, Briels WJ et al (1996) Discrete particle simulation of bubble and slug formation in a two-dimensional gas-fluidised bed: a hard-sphere approach. Chem Eng Sci 51:99–118

    Article  Google Scholar 

  26. Li J, Mason DJ (2000) A computational investigation of transient heat transfer in pneumatic transport of granular particles. Powder Technol 112:273–282

    Article  Google Scholar 

  27. Malone KF, Xu BH (2008) Particle-scale simulation of heat transfer in liquid-fluidised beds. Powder Technol 184:189–204

    Article  Google Scholar 

  28. Guo ZL, Shi BC, Wang NC (2000) Lattice BGK model for incompressible Navier–Stokes equation. J Comput Phys 165:288–306

    Article  Google Scholar 

  29. Yamamoto K, Takada N, Misawa M (2005) Combustion simulation with lattice Boltzmann method in a three-dimensional porous structure. Proc Combust Inst 30:1509–1515

    Article  Google Scholar 

  30. Mei R (1992) An approximate expression for the shear lift force on a spherical particle at finite Reynolds number. Int J Multiph Flow 18:145–147

    Article  Google Scholar 

  31. Rubinow SI, Keller JB (1961) The transverse force on a spinning sphere moving in a viscous fluid. J Fluid Mech 11:447–459

    Article  Google Scholar 

  32. Oesterle B, Dinh TB (1998) Experiments on the lift of a spinning sphere in a range of intermediate Reynolds number. Exp Fluids 25:16–22

    Article  Google Scholar 

  33. Dennis SCR, Singh SN, Ingham DB (1980) The steady flow due to a rotating sphere at low and moderate Reynolds number. J Fluid Mech 101:257–279

    Article  Google Scholar 

  34. Gui N, Fan JR, Zhou Z (2010) Particle statistics in a gas–solid coaxial strongly swirling flow: a direct numerical simulation. Int J Multiph Flow 36:234–243

    Article  Google Scholar 

  35. Orlanski I (1976) A simple boundary condition for unbounded hyperbolic flows. J Comput Phys 21:251–269

    Article  Google Scholar 

  36. Burmeister LC (1983) Convective heat transfer. Wiley, London

    Google Scholar 

  37. McDonald JW, Denny VE, Mills AF (1972) Numerical solutions for Navier–Stokes equations in inlet regions. J Appl Mech 39:873–878

    Article  Google Scholar 

  38. Gui N, Xu WK, Ge L et al (2013) LBE–DEM coupled simulation of gas–solid two-phase cross jets. Sci China Technol Sci 56:1377–1386

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (51106180) and the China Postdoctoral Science Foundation (2013M540964).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Gui.

About this article

Cite this article

Gui, N., Xu, W., Ge, L. et al. LBE–DEM simulation of inter-phase heat transfer in gas–solid cross jets. Chin. Sci. Bull. 59, 2486–2495 (2014). https://doi.org/10.1007/s11434-014-0285-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0285-7

Keywords

Navigation