Skip to main content
Log in

Ion transport-related resistive switching in film sandwich structures

  • Invited Review
  • Materials Science
  • Published:
Chinese Science Bulletin

Abstract

Resistive switching memories based on ion transport and related electrochemical reactions have been extensively studied for years. To utilize the resistive switching memories for high-performance information storage applications, a thorough understanding of the key information of ion transport process, including the mobile ion species, the ion transport paths, as well as the electrochemical reaction behaviors of these ions should be provided for material and device optimization. Moreover, ion transport is usually accompanied by processes of microstructure modification, phase transition, and energy band structure variation that lead to further modulation of other physical properties, e.g., magnetism, optical emission/absorbance, etc., in the resistive switching materials. Therefore, novel resistive switching memories that are controlled through additional means of magnetic or optical stimulus, or demonstrate extra functionalities beyond information storage, can be made possible via well-defined ion transportation in various switching materials and devices. In this contribution, the mechanism of ion transport and related resistive switching phenomena in thin film sandwich structures is discussed first, followed by a glance at the recent progress in the development of high-performance and multifunctional resistive switching memories. A brief perspective of the ion transport-based resistive switching memories is addressed at the end of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Yang JJ, Strukov DB, Stewart DR (2013) Memristive devices for computing. Nat Nanotechnol 8:13–24

    Article  Google Scholar 

  2. Chang T, Yang Y, Lu W (2013) Building neuromorphic circuits with memristive devices. IEEE Circ Syst Mag 13:56–73

    Article  Google Scholar 

  3. Chanthbouala A, Garcia V, Cherifi RO et al (2012) A ferroelectric memristor. Nat Mater 11:860–864

    Article  Google Scholar 

  4. Lu W (2013) Memristors: going active. Nat Mater 12:93–94

    Article  Google Scholar 

  5. Chua LO (1971) Memristor-the missing circuit element. IEEE Trans Circuit Theory 18:507–519

    Article  Google Scholar 

  6. Strukov DB, Snider GS, Stewart DR et al (2008) The missing memristor found. Nature 453:80–83

    Article  Google Scholar 

  7. Waser R, Dittmann R, Staikov G et al (2009) Redox-based resistive switching memories-nanoionic mechanisms, prospects, and challenges. Adv Mater 21:2632–2663

    Article  Google Scholar 

  8. Yang JJ, Borghetti J, Murphy D et al (2009) A family of electronically reconfigurable nanodevices. Adv Mater 21:3754–3758

    Article  Google Scholar 

  9. Zhu XJ, Shang J, Li RW (2012) Resistive switching effects in oxide sandwiched structures. Front Mater Sci 6:183–206

    Article  Google Scholar 

  10. Sawa A (2008) Resistive switching in transition metal oxides. Mater Today 11:28–36

    Article  Google Scholar 

  11. Cho B, Song S, Ji Y et al (2011) Organic resistive memory devices: performance enhancement, integration, and advanced architectures. Adv Funct Mater 21:2806–2829

    Article  Google Scholar 

  12. Kim KM, Jeong DS, Hwang CS (2011) Nanofilamentary resistive switching in binary oxide system: a review on the present status and outlook. Nanotechnology 22:254002

    Article  Google Scholar 

  13. Jeong DS, Thomas R, Katiyar RS et al (2011) Overview on the resistive switching in TiO2 solid electrolyte. Integr Ferroelectr 124:87–96

    Article  Google Scholar 

  14. Lee MH, Hwang CS (2011) Resistive switching memory: observations with scanning probe microscopy. Nanoscale 3:490–502

    Article  Google Scholar 

  15. Ielmini D, Bruchhaus R, Waser R (2011) Thermochemical resistive switching: materials, mechanisms, and scaling projections. Phase Transit 84:570–602

    Article  Google Scholar 

  16. Li Y, Long S, Liu Q et al (2011) An overview of resistive random access memory devices. Chin Sci Bull 56:3072–3078

    Article  Google Scholar 

  17. Waser R, Aono M (2007) Nanoionics-based resistive switching memories. Nat Mater 6:833–840

    Article  Google Scholar 

  18. Shang DS, Sun JR, Shen BG et al (2013) Resistance switching in oxides with inhomogeneous conductivity. Chin Phys B 22:067202

    Article  Google Scholar 

  19. Kim S, Kim SJ, Kim KM et al (2013) Physical electro-thermal model of resistive switching in bi-layered resistance-change memory. Sci Rep 3:1680

    Google Scholar 

  20. Chen A (2011) Ionic memory technology. In: Kharton VV (ed) Solid state electrochemistry II: electrodes, interfaces and ceramic membranes. Wiley, Weinheim, pp 1–30

    Chapter  Google Scholar 

  21. Szot K, Speier W, Bihlmayer G et al (2006) Switching the electrical resistance of individual dislocations in single-crystalline SrTiO3. Nat Mater 5:312–320

    Article  Google Scholar 

  22. Lee MJ, Lee CB, Lee D et al (2011) A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta2O5−x /TaO2−x bilayer structures. Nat Mater 10:625–630

    Article  Google Scholar 

  23. Linn E, Rosezin R, Kugeler C et al (2010) Complementary resistive switches for passive nanocrossbar memories. Nat Mater 9:403–406

    Article  Google Scholar 

  24. Tang G, Zeng F, Chen C et al (2013) Programmable complementary resistive switching behaviours of a plasma-oxidised titanium oxide nanolayer. Nanoscale 5:422–428

    Article  Google Scholar 

  25. Yang Y, Choi S, Lu W (2013) Oxide heterostructure resistive memory. Nano Lett 13:2908–2915

    Article  Google Scholar 

  26. Nonnenmann SS, Gallo EM, Spanier JE (2010) Redox-based resistive switching in ferroelectric perovskite nanotubes. Appl Phys Lett 97:102904

    Article  Google Scholar 

  27. Yan Z, Guo Y, Zhang G et al (2011) High-performance programmable memory devices based on Co-doped BaTiO3. Adv Mater 23:1351–1355

    Article  Google Scholar 

  28. Liao Z, Gao P, Bai X et al (2012) Evidence for electric-field-driven migration and diffusion of oxygen vacancies in Pr0.7Ca0.3MnO3. J Appl Phys 111:114506

    Article  Google Scholar 

  29. Chen XG, Fu JB, Yun C et al (2013) The manipulation of magnetic properties by resistive switching effect in CeO2/La0.7(Sr0.1Ca0.9)0.3MnO3 system. J Appl Phys 113:17C708

    Google Scholar 

  30. Yin K, Li M, Liu Y et al (2010) Resistance switching in polycrystalline BiFeO3 thin films. Appl Phys Lett 97:042101

    Article  Google Scholar 

  31. Li M, Zhuge F, Zhu X et al (2010) Nonvolatile resistive switching in metal/La-doped BiFeO3/Pt sandwiches. Nanotechnology 21:425202

    Article  Google Scholar 

  32. Zhu X, Zhuge F, Li M et al (2011) Microstructure dependence of leakage and resistive switching behaviours in Ce-doped BiFeO3 thin films. J Phys D Appl Phys 44:415104

    Article  Google Scholar 

  33. Zhang J, Yang H, Zhang QL et al (2013) Structural, optical, electrical and resistive switching properties of ZnO thin films deposited by thermal and plasma-enhanced atomic layer deposition. Appl Surf Sci 282:390–395

    Article  Google Scholar 

  34. Sekhar KC, Silva JPB, Kamakshi K et al (2013) Semiconductor layer thickness impact on optical and resistive switching behavior of pulsed laser deposited BaTiO3/ZnO heterostructures. Appl Phys Lett 102:212903

    Article  Google Scholar 

  35. Acha C (2011) Dynamical behaviour of the resistive switching in ceramic YBCO/metal interfaces. J Phys D Appl Phys 44:345301

    Article  Google Scholar 

  36. He CL, Zhuge F, Zhou XF et al (2009) Nonvolatile resistive switching in graphene oxide thin films. Appl Phys Lett 95:232101

    Article  Google Scholar 

  37. Zhuge F, Hu B, He C et al (2011) Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49:3796–3802

    Article  Google Scholar 

  38. Chang KC, Zhang R, Chang TC et al (2013) Origin of hopping conduction in graphene-oxide-doped silicon oxide resistance random access memory devices. IEEE Electron Device Lett 34:677–679

    Article  Google Scholar 

  39. Yang Y, Lu W (2013) Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5:10076–10092

    Article  Google Scholar 

  40. Lu W, Jeong DS, Kozicki M et al (2012) Electrochemical metallization cells-blending nanoionics into nanoelectronics? MRS Bull 37:124–130

    Article  Google Scholar 

  41. Lin KL, Hou TH, Shieh J et al (2011) Electrode dependence of filament formation in HfO2 resistive-switching memory. J Appl Phys 109:084104

    Article  Google Scholar 

  42. Yu W, Li X, Rui Y et al (2008) Improvement of resistive switching property in a noncrystalline and low-resistance La0.7Ca0.3MnO3 thin film by using an Ag–Al alloy electrode. J Phys D Appl Phys 41:215409

    Article  Google Scholar 

  43. Goux L, Chen YY, Pantisano L et al (2010) On the gradual unipolar and bipolar resistive switching of TiN/HfO2/Pt memory systems. Electrochem Solid State Lett 13:G54–G56

    Article  Google Scholar 

  44. Gao S, Song C, Chen C et al (2013) Formation process of conducting filament in planar organic resistive memory. Appl Phys Lett 102:141606

    Article  Google Scholar 

  45. Yang YC, Pan F, Liu Q et al (2009) Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett 9:1636–1643

    Article  Google Scholar 

  46. Liu Q, Long S, Lv H et al (2010) Controllable growth of nanoscale conductive filaments in solid-electrolyte-based ReRAM by using a metal nanocrystal covered bottom electrode. ACS Nano 4:6162–6168

    Article  Google Scholar 

  47. Jung K, Seo H, Kim Y et al (2007) Temperature dependence of high- and low-resistance bistable states in polycrystalline NiO films. Appl Phys Lett 90:052104

    Article  Google Scholar 

  48. Liu Q, Sun J, Lv H et al (2012) Real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater 24:1844–1849

    Article  Google Scholar 

  49. Sun J, Liu Q, Xie H et al (2013) In situ observation of nickel as an oxidizable electrode material for the solid-electrolyte-based resistive random access memory. Appl Phys Lett 102:053502

    Article  Google Scholar 

  50. Zhu X, Su W, Liu Y et al (2012) Observation of conductance quantization in oxide-based resistive switching memory. Adv Mater 24:3941–3946

    Article  Google Scholar 

  51. Peng CN, Wang CW, Chan TC et al (2012) Resistive switching of Au/ZnO/Au resistive memory: an in situ observation of conductive bridge formation. Nanoscale Res Lett 7:559

    Article  Google Scholar 

  52. Xu Z, Bando Y, Wang W et al (2010) Real-time in situ HRTEM-resolved resistance switching of Ag2S nanoscale ionic conductor. ACS Nano 4:2515–2522

    Article  Google Scholar 

  53. Valov I, Sapezanskaia I, Nayak A et al (2012) Atomically controlled electrochemical nucleation at superionic solid electrolyte surfaces. Nat Mater 11:530–535

    Article  Google Scholar 

  54. Zhu X, Ong CS, Xu X et al (2013) Direct observation of lithium-ion transport under an electrical field in Li x CoO2 nanograins. Sci Rep 3:1084

    Google Scholar 

  55. Yang JJ, Inoue IH, Mikolajick T et al (2012) Metal oxide memories based on thermochemical and valence change mechanisms. MRS Bull 37:131–137

    Article  Google Scholar 

  56. Chen C, Gao S, Zeng F et al (2013) Migration of interfacial oxygen ions modulated resistive switching in oxide-based memory devices. J Appl Phys 114:014502

    Article  Google Scholar 

  57. Syu YE, Chang TCC, Tsai TMM et al (2011) Redox reaction switching mechanism in RRAM device with Pt/CoSiO x /TiN structure. IEEE Electron Device Lett 32:545–547

    Article  Google Scholar 

  58. Chen MC, Chang TC, Tsai CT et al (2010) Influence of electrode material on the resistive memory switching property of indium gallium zinc oxide thin films. Appl Phys Lett 96:262110

    Article  Google Scholar 

  59. Guo Z, Sa B, Zhou J et al (2013) Role of oxygen vacancies in the resistive switching of SrZrO3 for resistance random access memory. J Alloys Compd 580:148–151

    Article  Google Scholar 

  60. Doo SJ, Reji T, Katiyar RS et al (2012) Emerging memories: resistive switching mechanisms and current status. Rep Prog Phys 75:076502

    Article  Google Scholar 

  61. Kwon DH, Kim KM, Jang JH et al (2010) Atomic structure of conducting nanofilaments in TiO2 resistive switching memory. Nat Nanotechnol 5:148–153

    Article  Google Scholar 

  62. Miao F, Strachan JP, Yang JJ et al (2011) Anatomy of a nanoscale conduction channel reveals the mechanism of a high-performance memristor. Adv Mater 23:5633–5640

    Article  Google Scholar 

  63. Park GS, Li XS, Kim DC et al (2007) Observation of electric-field induced Ni filament channels in polycrystalline NiO x film. Appl Phys Lett 91:222103

    Article  Google Scholar 

  64. Chen JY, Hsin CL, Huang CW et al (2013) Dynamic evolution of conducting nanofilament in resistive switching memories. Nano Lett 13:3671–3677

    Article  Google Scholar 

  65. Shang J, Liu G, Yang H et al (2013) Thermally-stable transparent resistive random access memory based on all-oxide heterostructures. Adv Funct Mater. doi:10.1002/adfm.201303274

    Google Scholar 

  66. Zou C, Chen B, Zhu XJ et al (2011) Local leakage current behaviours of BiFeO3 films. Chin Phys B 20:117701

    Article  Google Scholar 

  67. Zhou MX, Chen B, Sun HB et al (2013) Local electrical conduction in polycrystalline La-doped BiFeO3 thin films. Nanotechnology 24:225702

    Article  Google Scholar 

  68. Zhuge F, Peng S, He C et al (2011) Improvement of resistive switching in Cu/ZnO/Pt sandwiches by weakening the randomicity of the formation/rupture of Cu filaments. Nanotechnology 22:275204

    Article  Google Scholar 

  69. Lanza M, Zhang K, Porti M et al (2012) Grain boundaries as preferential sites for resistive switching in the HfO2 resistive random access memory structures. Appl Phys Lett 100:123508

    Article  Google Scholar 

  70. Shang DS, Shi L, Sun JR et al (2011) Local resistance switching at grain and grain boundary surfaces of polycrystalline tungsten oxide films. Nanotechnology 22:254008

    Article  Google Scholar 

  71. Valov I, Waser R (2013) Comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater 25:162–164

    Article  Google Scholar 

  72. Liu Q, Jun S, Lv H et al (2013) Response to comment on real-time observation on dynamic growth/dissolution of conductive filaments in oxide-electrolyte-based ReRAM. Adv Mater 25:165–167

    Article  Google Scholar 

  73. Valov I, Waser R (2013) Comment on dynamic processes of resistive switching in metallic filament-based organic memory devices. J Phys Chem C 117:11878–11880

    Article  Google Scholar 

  74. Gao S, Song C, Chen C et al (2013) Reply to comment on dynamic processes of resistive switching in metallic filament-based organic memory devices. J Phys Chem C 117:11881–11882

    Article  Google Scholar 

  75. Guo X, Schindler C, Menzel S et al (2007) Understanding the switching-off mechanism in Ag+ migration based resistively switching model systems. Appl Phys Lett 91:133513

    Article  Google Scholar 

  76. Yang Y, Gao P, Gaba S et al (2012) Observation of conducting filament growth in nanoscale resistive memories. Nat Commun 3:732

    Article  Google Scholar 

  77. Peng S, Zhuge F, Chen X et al (2012) Mechanism for resistive switching in an oxide-based electrochemical metallization memory. Appl Phys Lett 100:072101

    Article  Google Scholar 

  78. Terabe K, Hasegawa T, Nakayama T et al (2005) Quantized conductance atomic switch. Nature 433:47–49

    Article  Google Scholar 

  79. Tappertzhofen S, Valov I, Waser R (2012) Quantum conductance and switching kinetics of AgI-based microcrossbar cells. Nanotechnology 23:145703

    Article  Google Scholar 

  80. Liu D, Cheng H, Zhu X et al (2013) Analog memristors based on thickening/thinning of Ag nanofilaments in amorphous manganite thin films. ACS Appl Mater Interfaces 5:11258–11264

    Article  Google Scholar 

  81. Long S, Lian X, Cagli C et al (2013) Quantum-size effects in hafnium-oxide resistive switching. Appl Phys Lett 102:183505

    Article  Google Scholar 

  82. Long S, Perniola L, Cagli C et al (2013) Voltage and power-controlled regimes in the progressive unipolar Reset transition of HfO2-based RRAM. Sci Rep 3:2929

    Google Scholar 

  83. Gao S, Zeng F, Chen C et al (2013) Conductance quantization in a Ag filament-based polymer resistive memory. Nanotechnology 24:335201

    Article  Google Scholar 

  84. Mehonic A, Vrajitoarea A, Cueff S et al (2013) Quantum conductance in silicon oxide resistive memory devices. Sci Rep 3:2708

    Article  Google Scholar 

  85. Chen C, Gao S, Zeng F et al (2013) Conductance quantization in oxygen-anion-migration-based resistive switching memory devices. Appl Phys Lett 103:043510

    Article  Google Scholar 

  86. Syu YE, Chang TC, Lou JH et al (2013) Atomic-level quantized reaction of HfO x memristor. Appl Phys Lett 102:172903

    Article  Google Scholar 

  87. Li CZ, Bogozi A, Huang W et al (1999) Fabrication of stable metallic nanowires with quantized conductance. Nanotechnology 10:221–223

    Article  Google Scholar 

  88. Khomyakov PA, Brocks G (2006) Stability of conductance oscillations in monatomic sodium wires. Phys Rev B 74:165416

    Article  Google Scholar 

  89. Wager JF (2003) Transparent electronics. Science 300:1245–1246

    Article  Google Scholar 

  90. Liu KC, Tzeng WH, Chang KM et al (2011) Bipolar resistive switching effect in Gd2O3 films for transparent memory application. Microelectron Eng 88:1586–1589

    Article  Google Scholar 

  91. Zheng K, Sun XW, Zhao JL et al (2011) An indium-free transparent resistive switching random access memory. IEEE Electron Device Lett 32:797–799

    Article  Google Scholar 

  92. Hu B, Zhu X, Chen X et al (2012) A multilevel memory based on proton-doped polyazomethine with an excellent uniformity in resistive switching. J Am Chem Soc 134:17408–17411

    Article  Google Scholar 

  93. Wang L, Wang D, Cao Q et al (2012) Electric control of magnetism at room temperature. Sci Rep 2:223

    Google Scholar 

  94. Ohno H, Chiba D, Matsukura F et al (2000) Electric-field control of ferromagnetism. Nature 408:944–946

    Article  Google Scholar 

  95. Chen G, Song C, Chen C et al (2012) Resistive switching and magnetic modulation in cobalt-doped ZnO. Adv Mater 24:3515–3520

    Article  Google Scholar 

  96. Son JY, Kim CH, Cho JH et al (2010) Self-formed exchange bias of switchable conducting filaments in NiO resistive random access memory capacitors. ACS Nano 4:3288–3292

    Article  Google Scholar 

  97. Pantel D, Goetze S, Hesse D et al (2012) Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat Mater 11:289–293

    Article  Google Scholar 

  98. Prezioso M, Riminucci A, Graziosi P et al (2013) A single-device universal logic gate based on a magnetically enhanced memristor. Adv Mater 25:534–538

    Article  Google Scholar 

  99. He C, Li J, Wu X et al (2013) Tunable electroluminescence in planar graphene/SiO2 memristors. Adv Mater 25:5593–5598

    Article  Google Scholar 

  100. Park J, Lee S, Lee J et al (2013) A light incident angle switchable ZnO nanorod memristor: reversible switching behavior between two non-volatile memory devices. Adv Mater 25:6423–6429

    Article  Google Scholar 

  101. Huang JJ, Chang TC, Yu CC et al (2013) Enhancement of the stability of resistive switching characteristics by conduction path reconstruction. Appl Phys Lett 103:042902

    Article  Google Scholar 

  102. Lee MJ, Han S, Jeon SH et al (2009) Electrical manipulation of nanofilaments in transition-metal oxides for resistance based memory. Nano Lett 9:1476–1481

    Article  Google Scholar 

  103. Lu W, Lieber CM (2007) Nanoelectronics from the bottom up. Nat Mater 6:841–850

    Article  Google Scholar 

  104. Maier J (2005) Nanoionics: ion transport and electrochemical storage in confined systems. Nat Mater 4:805–815

    Article  Google Scholar 

  105. Awschalom DD, Flatte ME (2007) Challenges for semiconductor spintronics. Nat Phys 3:153–159

    Article  Google Scholar 

  106. Bonaccorso F, Sun Z, Hasan T et al (2010) Graphene photonics and optoelectronics. Nat Photon 4:611–622

    Article  Google Scholar 

  107. Kim KH, Gaba S, Wheeler D et al (2011) A functional hybrid memristor crossbar-array/CMOS system for data storage and neuromorphic applications. Nano Lett 12:389–395

    Article  Google Scholar 

  108. Chang T, Jo SH, Lu W (2011) Short-term memory to long-term memory transition in a nanoscale memristor. ACS Nano 5:7669–7676

    Article  Google Scholar 

  109. Jo SH, Chang T, Ebong I et al (2010) Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett 10:1297–1301

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (2009CB933004, 2012CB933004), the National Natural Science Foundation of China (51172250, 51303194, 61328402, 61306152), Zhejiang and Ningbo Natural Science Foundations (2013A610031), and Science and Technology Innovative Research Team of Ningbo Municipality (2009B21005, 2011B82004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Liu or Run-Wei Li.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, XJ., Shang, J., Liu, G. et al. Ion transport-related resistive switching in film sandwich structures. Chin. Sci. Bull. 59, 2363–2382 (2014). https://doi.org/10.1007/s11434-014-0284-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0284-8

Keywords

Navigation