Skip to main content
Log in

Progress of transition metal-catalyzed cross-coupling mediated by PyBroP

  • Progress
  • Organic Chemistry
  • Published:
Chinese Science Bulletin

Abstract

In the transition metal-catalyzed cross-coupling reactions, phenol and enol derivatives activated by phosphorus groups are very important electrophiles. This kind of compounds has the advantages of easy preparation, great stability, and producing more benign phosphorus by-products. The present work provides a comprehensive review of the advances made over the past several decades in this area. Cross-coupling reactions mediated by PyBroP are first surveyed, then two types of recently developed transition metal-catalyzed reactions, i.e., Pd-catalyzed and Ni-catalyzed reactions, and the corresponding mechanisms are discussed. Finally, future directions are analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Mansour TS, Bardhan S, Wan ZK (2010) Phosphonium- and benzotriazolyloxy-mediated bond-forming reactions and their synthetic applications. Synlett 8:1143–1169

    Google Scholar 

  2. Kang FA, Sui ZH, Murray WV (2009) Phosphonium coupling in the direct bond formations of tautomerizable heterocycles via C–OH bond activation. Eur J Org Chem 4:461–479

    Article  Google Scholar 

  3. ElMarrouni A, Fabrellas JM, Heras M (2011) Coupling reaction between electron-rich pyrimidinones and α-amino acids promoted by phosphonium salts. Org Biomol Chem 9:5967–5977

    Article  Google Scholar 

  4. Castro B, Dormoy JR, Evin G et al (1975) Reactifs de couplage peptidique IV (1)—l′hexafluorophosphate de benzotriazolyl N-oxytrisoimethylamino phosphonium (B. O. P). Tetrahedron Lett 16:1219–1222

    Article  Google Scholar 

  5. Coste J, Frerot E, Jouin P (1994) Coupling N-methylated amino acids using PyBroP and PyCloP halogenophosphonium salts: mechanism and fields of application. J Org Chem 59:2437–2446

    Article  Google Scholar 

  6. Campagne JM, Coste J, Jouin P (1995) (1H-Benzotriazol-1-yloxy)tris(dimethylamino)-phosphonium hexafluorophosphate- and (1H-benzotriazol-1-yloxy)tripyrrolidinophosphonium hexafluorophosphate-mediated activation of monophosphonate esters: synthesis of mixed phosphonate diesters, the reactivity of the benzotriazolyl phosphonic esters vs the reactivity of the benzotriazolyl carboxylic esters. J Org Chem 60:5214–5223

    Google Scholar 

  7. Kim MH, Patel DV (1994) “BOP” as a reagent for mild and efficient preparation of esters. Tetrahedron Lett 35:5603–5606

    Article  Google Scholar 

  8. Coste J, Campagne JM (1995) A propos de l’estérification des acides carboxyliques par le BOP ou le PyBOP. Tetrahedron Lett 36:4253–4256

    Article  Google Scholar 

  9. Castro B, Chapleur Y, Gross B et al (1972) Sels d’alkyloxyphosphonium III—activation selective de l’hydroxyle primaire du methyl, α-d-glucopyrannoside. Tetrahedron Lett 13:5001–5004

    Article  Google Scholar 

  10. Castro B, Selve C (2010) Sels d’alkyloxyphosphonium. VI—nouvelle preparation des dialkyl-3,3 oxetannes. Tetrahedron Lett 14:4459–4460

    Article  Google Scholar 

  11. Downie IM, Heaney H, Kemp G (1988) Preparation of alkyl–aryl ethers and thioethers. Tetrahedron 44:2619–2624

    Article  Google Scholar 

  12. Roncalil J (1997) Synthetic principles for bandgap control in linear π-conjugated systems. Chem Rev 97:173–205

    Article  Google Scholar 

  13. Littke AF, Fu GC (2002) Palladium-catalyzed coupling reactions of aryl chlorides. Angew Chem Int Ed Engl 41:4176–4211

    Article  Google Scholar 

  14. Hassan J, Sevignon M, Gozzi C et al (2002) Aryl–aryl bond formation one century after the discovery of the Ullmann reaction. Chem Rev 102:1359–1469

    Article  Google Scholar 

  15. Horton DA, Bourne GT, Smythe ML (2003) The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem Rev 103:893–930

    Article  Google Scholar 

  16. Yao ML, Wang JP, Deng MZ (2001) Cross-coupling reaction of cyclopropylboronic acids with aryl ω-halo-oxo-perfluoroalkylsulfonates. Chin Sci Bull 46:1277–1281

    Article  Google Scholar 

  17. Kang FA, Sui ZH, Murray WV (2008) Pd-catalyzed direct arylation of tautomerizable heterocycles with aryl boronic acids via C–OH bond activation using phosphonium salts. J Am Chem Soc 130:11300–11302

    Article  Google Scholar 

  18. Kang FA, Lanter JC, Cai CZ et al (2010) Direct dehydrative cross-coupling of tautomerizable heterocycles with alkynes via Pd/Cu-catalyzed phosphonium coupling. Chem Commun 46:1347–1349

    Article  Google Scholar 

  19. Shi C, Aldrich CC (2010) Efficient Pd-catalyzed coupling of tautomerizable heterocycles with terminal alkynes via C–OH bond activation using PyBroP. Org Lett 12:2286–2289

    Article  Google Scholar 

  20. Mehta VP, Modha SG, Van der Eycken EV (2010) Microwave-assisted palladium-catalyzed phosphonium coupling of 2(1H)-pyrazinones. J Org Chem 75:976–979

    Article  Google Scholar 

  21. Sharma A, Vachhani D, Van der Eycken E (2012) Direct heteroarylation of tautomerizable heterocycles into unsymmetrical and symmetrical biheterocycles via Pd/Cu-catalyzed phosphonium coupling. Org Lett 14:1854–1857

    Article  Google Scholar 

  22. Rappoport Z (2003) The chemistry of phenols. Wiley, Chichester

    Book  Google Scholar 

  23. Miyaura N, Suzuki A (1995) Palladium-catalyzed cross-coupling reactions of organoboron compounds. Chem Rev 95:2457–2483

    Article  Google Scholar 

  24. Chen GJ, Huang J, Gao LX et al (2011) Nickel-catalyzed cross-coupling of phenols and arylboronic acids through an in situ phenol activation mediated by PyBroP. Chem Eur J 17:4038–4042

    Article  Google Scholar 

  25. Li SM, Huang J, Chen GJ et al (2011) PdCl2(dppf)-catalyzed in situ coupling of 2-hydroxypyridines with aryl boronic acids mediated by PyBroP and the one-pot chemo- and regioselective construction of two distinct aryl–aryl bonds. Chem Commun 47:12840–12842

    Article  Google Scholar 

  26. Evans OR, Manke DR, Lin W (2002) Homochiral metal-organic frameworks based on transition metal bisphosphonates. Chem Mater 14:3866–3874

    Article  Google Scholar 

  27. Jin S, Gonsalves KE (1998) Synthesis and characterization of functionalized poly(ε-caprolactone) copolymers by free-radical polymerization. Macromolecules 31:1010–1015

    Article  Google Scholar 

  28. Dang Q, Liu Y, Cashion DK et al (2011) Discovery of a series of phosphonic acid-containing thiazoles and orally bioavailable diamide prodrugs that lower glucose in diabetic animals through inhibition of fructose-1,6-bisphosphatase. J Med Chem 54:153–165

    Article  Google Scholar 

  29. Birkholz MN, Freixa Z, van Leeuwen PWNM (2009) Bite angle effects of diphosphines in C–C and C–X bond forming cross coupling reaction. Chem Soc Rev 38:1099–1118

    Article  Google Scholar 

  30. Glueck DS (2008) Catalytic asymmetric synthesis of chiral phosphanes. Chem Eur J 14:108–7117

    Article  Google Scholar 

  31. Zhao YL, Wu GJ, Han FS (2012) Ni-catalyzed construction of C–P bonds from electron-deficient phenols via the in situ aryl C–O activation by PyBroP. Chem Commun 48:5868–5870

    Google Scholar 

Download references

Acknowledgments

This work was supported by the Public Welfare Technology Applied Project of Lishui City (2012JYZB32).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guojun Chen or Jianshi Du.

About this article

Cite this article

Chen, G., Du, J. Progress of transition metal-catalyzed cross-coupling mediated by PyBroP. Chin. Sci. Bull. 59, 1942–1949 (2014). https://doi.org/10.1007/s11434-014-0239-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-014-0239-0

Keywords

Navigation