Skip to main content
Log in

Review on the adhesive tendrils of Parthenocissus

  • Review
  • Chemical Biology
  • Published:
Chinese Science Bulletin

Abstract

320 years ago, the adhesive tendrils of Parthenocissus were studied. Recently, the permanent attachment system of the tendrils is retrieved concerns. Light microscopy, scanning electron microscopy and transmission electron microscopy observations provide sufficient information on the characteristic attachment structure. Histochemical, cytochemical and immunocytochemical methods unravel the sorts and the molecular compositions of the secreted adhesive fluid. This review provides a general overview of the whole research history and the latest progress in this field. The authors elaborate the adhesive tendrils of Parthenocissus from macroscopic morphology, through microscopic structure, secreted adhesive fluid, adhesive force and adhesion mechanism to bionic exploration and application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Malpighi M (1686) Opera Omnia. Anatome Plantarum. Pars Altera. Tho. Sawbridge and Geo. Wells, London

    Google Scholar 

  2. Darwin C (1865) On the movements and habits of climbing plants. J Linn Soc Lond Bot 9:1–118

    Article  Google Scholar 

  3. Darwin C (1875) The movements and habits of climbing plants. John Murray, London

    Google Scholar 

  4. Rowe N, Isnard S, Speck T (2004) Diversity of mechanical architectures in climbing plants: an evolutionary perspective. J Plant Growth Regul 23:108–128

    Article  Google Scholar 

  5. Isnard S, Silk WK (2009) Moving with climbing plants from Charles Darwin’s time into the 21st century. Am J Bot 96:1205–1221

    Article  Google Scholar 

  6. Silk WK, Holbrook NM (2005) The importance of frictional interactions in maintaining the stability of the twining habit. Am J Bot 92:1820–1826

    Article  Google Scholar 

  7. Treub M (1883) Sur une nouvelle catégorie de plantes grimpantes (in French). Ann Jard Bot Buitenzorg 3:44–75

    Google Scholar 

  8. Ewart A (1898) On contact irritability. Ann Jard Bot Buitenzorg 15:187–242

    Google Scholar 

  9. Isnard S, Rowe N (2008) The climbing habit in palms: biomechanics of the cirrus and flagellum. Am J Bot 95:1538–1547

    Article  Google Scholar 

  10. Rowe N, Isnard S (2009) Biomechanics of climbing palms and how they climb. Plant Signal Behav 4:875–877

    Article  Google Scholar 

  11. Bauer G, Klein MC, Gorb SN et al (2011) Always on the bright side: the climbing mechanism of Galium aparine. Proc R Soc B 278:2233–2239

    Article  Google Scholar 

  12. Jaffe M, Galston A (1968) The physiology of tendrils. Annu Rev Plant Physiol 19:417–434

    Article  Google Scholar 

  13. Goriely A, Tabor M (1998) Spontaneous helix hand reversal and tendril perversion in climbing plants. Phys Rev Lett 80:1564–1567

    Article  Google Scholar 

  14. Meloche CG, Knox JP, Vaughn KC (2007) A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies. Planta 225:485–498

    Article  Google Scholar 

  15. Gerbode SJ, Puzey JR, McCormick AG et al (2012) How the cucumber tendril coils and overwinds. Science 337:1087–1091

    Article  Google Scholar 

  16. Scherge M, Gorb SS (2001) Biological micro- and nano-tribology: nature’s solutions. Springer-Verlag, Berlin

    Book  Google Scholar 

  17. Nie ZL, Sun H, Chen DA et al (2010) Molecular phylogeny and biogeographic diversification of Parthenocissus (vitaceae) disjunct between Asia and North America. Am J Bot 97:1342–1353

    Article  Google Scholar 

  18. Millington W (1966) The tendril of Parthenocissus inserta: determination and development. Am J Bot 53:74–81

    Article  Google Scholar 

  19. Reinhold L, Sachs T, Vislovska L (1970) The role of auxin in thigmotropism. Plant Growth Subst 406:731–737

    Google Scholar 

  20. Mohl H (1827) Üeber den Bau und das Winden der Ranken und Schlingpflanzen (in German). Heinrich Laupp, Tübingen

    Book  Google Scholar 

  21. Lengerken AV (1885) Die Bildung der Haftballen an den Ranken einiger Arten der Gattung Ampelopsis (in German). Botanische Zeitung 43:337–346

    Google Scholar 

  22. Moens P (1956) Ontogénèse des vrilles et différenciation des ampoules adhésives chez quelques végétaux (Ampelopsis, Bignonia, Glaziovia) (in French). La Cellule 57:369–401

    Google Scholar 

  23. Chiang SH, Tu M (1971) Histological study on the tendril of Parthenocissus tricuspidata. Taiwania 16:49–66

    Google Scholar 

  24. Junker S (1976) A scanning electron microscopic study on the development of tendrils of Parthenocissus tricuspidata Sieb. & Zucc. New Phytol 77:741–746

    Article  Google Scholar 

  25. Endress AG, Thomson WW (1976) Ultrastructural and cytochemical studies on the developing adhesive disc of Boston Ivy tendrils. Protoplasma 88:315–331

    Article  Google Scholar 

  26. Endress AG, Thomson WW (1977) Adhesion of the Boston ivy tendril. Can J Bot 55:918–924

    Article  Google Scholar 

  27. Ragni G, Conti G, Cinti S et al (1988) Parthenocissus tricuspidata: un modèle végétal d’adhésion biologique (in French). Bull Group int Rech sc Stoma et Odont 31:189–205

    Google Scholar 

  28. Jiang ZC (1994) A morphological study on the wall adhesion mechanism of the adhesive discs of Parthenocissus tricuspidata and P. henryana (in Chinese). J Nanjing Agric Uni 4:27–31

    Google Scholar 

  29. Kim J, Kim IS (2007) Epidermal changes of the adhesive disks during wall attachment in Parthenocissus tricuspidata (in korean). Korean J Electron Microsc 37:83–91

    Google Scholar 

  30. Bowling AJ, Vaughn KC (2008) Structural and immunocytochemical characterization of the adhesive tendril of Virginia creeper (Parthenocissus quinquefolia [L.] Planch.). Protoplasma 232:153–163

    Article  Google Scholar 

  31. Deng WL (2008) Tendril Adhesive disc and super adhesive effect of climbing plant. http://hdl.handle.net/10101/npre.2008.1513.1

  32. He T, Zhang L, Deng WL (2011) Designing polystyrene honeycomb-like microstructure with high water adhesion. Mater Chem Phys 131:23–26

    Article  Google Scholar 

  33. Steinbrecher T, Danninger E, Harder D et al (2010) Quantifying the attachment strength of climbing plants: a new approach. Acta Biomater 6:1497–1504

    Article  Google Scholar 

  34. Steinbrecher T, Kraft O, Speck T et al (2009) Ontogenetic variations in morphology and attachment strength of permanent attachment pads of species of Parthenocissus. In: Thibaut B, (ed) Proceedings of the sixth plant biomechanics conference, Cayenne, 2009. 16–21

  35. Steinbrecher T, Beuchle G, Melzer B et al (2011) Structural development and morphology of the attachment system of Parthenocissus tricuspidata. Int J Plant Sci 172:1120–1129

    Article  Google Scholar 

  36. Bowling AJ, Vaughn KC (2009) Gelatinous fibers are widespread in coiling tendrils and twining vines. Am J Bot 96:719–727

    Article  Google Scholar 

  37. Yim J, Kim IS (2002) Morphological and cellular characteristics of aerial roots in the epiphytic American Ivy (Parthenocissus sp.). Korean. J Electron Microsc 32:329–337

    Google Scholar 

  38. Sabba RP, Durso NA, Vaughn KC (1999) Structural and immunocytochemical characterization of the walls of dichlobenil-habituated BY-2 tobacco cells. Inter J Plant Sci 160:275–290

    Article  Google Scholar 

  39. Speck T, Krings M, Kerp H (2000) A climbing late Palaeozoic seed fern with adhesive tendrils: an early finding of shock-absorbing anchoring structures in fossil climbing plants. In: Spatz HC, Speck T (eds). Plant biomechanics 2000-proceedings of the 3rd international plant biomechanics conference, Freiburg-Badenweiler, Germany, 2000. 287–294

  40. Fernandes J, Henriques F (1991) Biochemical, physiological, and structural effects of excess copper in plants. Bot Rev 57:246–273

    Article  Google Scholar 

  41. He T, Zhang L, Deng WL (2011) Biological adhesion of Parthenocissus tricuspidata. Arch Biol Sci 63:393–398

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (91023002, 51073059) and the National Basic Research Project of Program (2012CB932900, 2009CB930604).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenli Deng.

About this article

Cite this article

Yang, X., Deng, W. Review on the adhesive tendrils of Parthenocissus . Chin. Sci. Bull. 59, 113–124 (2014). https://doi.org/10.1007/s11434-013-0037-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0037-0

Keywords

Navigation