Skip to main content
Log in

Room-temperature NH3 sensors with high sensitivity and short response/recovery times

  • Article
  • Semiconductor
  • Published:
Chinese Science Bulletin

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Micro-sensors are fabricated by co-electrospinning In2O3 and SnO2 nanofibers on the substrates of SiO2/Si with interdigitated Pt signal electrodes. The total sensor area is 1.36 mm × 0.55 mm and the active area is only 0.63 mm × 0.55 mm. Excellent NH3 sensing properties are obtained based on the sensors at room temperature. The sensitivity is at most 28 when the sensors are exposed to NH3 of 10 ppm. The response time is 8 s or so and the recovery time is nearly 2 s. Not only fine selectivity, but also long-time stability is obtained. The results not only demonstrate the obtained micro-sensors are very promising devices for NH3 detection, but also show a possible route for large-scale NH3 sensor fabrication at the industrial level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Lee SM, Dyer DC, Gardner JW (2003) Design and optimisation of a high-temperature silicon micro-hotplate for nanoporous palladium pellistors. Microelectron J 34:115–126

    Article  Google Scholar 

  2. Franke ME, Koplin TJ, Simon U (2006) Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2:36–50

    Article  Google Scholar 

  3. Huang XJ, Cho YK (2007) Chemical sensors based on nanostructured materials. Sens Actuators B 122:659–671

    Article  Google Scholar 

  4. Jing K, Nathan RF, Chongwu Z et al (2000) Nanotube molecular wires as chemical sensors. Science 287:622–625

    Article  Google Scholar 

  5. Kolmakov A, Moskovits M (2004) Chemical sensing and catalysis by one-dimensional metal-oxide nanostructures. Annu Rev Mater Res 34:151–180

    Article  Google Scholar 

  6. Dong Q, Su H, Zhang D et al (2006) Fabrication and gas sensitivity of SnO2 hierarchical films with interwoven tubular conformation by a biotemplate-directed sol–gel technique. Nanotechnology 17:3968–3972

    Article  Google Scholar 

  7. Qi Q, Zhang T, Liu L et al (2009) Improved NH3, C2H5OH, and CH3COCH3 sensing properties of SnO2 nanofibers by adding block copolymer P123. Sens Actuators B 141:174–178

    Article  Google Scholar 

  8. Chambon L, Germain JP, Pauly A et al (1999) A metallic oxide gas sensor array for a selective detection of the CO and NH3 gases. Sens Actuators B 60:138–147

    Article  Google Scholar 

  9. Patil DR, Patil LA, Patil PP (2007) Cr2O3-activated ZnO thick film resistors for ammonia gas sensing operable at room temperature. Sens Actuators B 126:368–374

    Article  Google Scholar 

  10. Douglas RK, Alexader S (2008) Carbon nanotube gas and vapor sensors. Angew Chem Int Ed 47:6550–6570

    Article  Google Scholar 

  11. Comini E, Faglia G, Sberveglieri G et al (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81:1869–1871

    Article  Google Scholar 

  12. Janata J, Josowicz M, Devaney DM (1994) Chemical sensors. Anal Chem 66:207R–228R

    Article  Google Scholar 

  13. Barsan N, Koziej D, Weimar U (2007) Metal oxide-based gas sensor research: how to? Sens Actuators B 121:18–35

    Article  Google Scholar 

  14. Park JA, Moon J, Lee SJ et al (2010) SnO2–ZnO hybrid nanofibers-based highly sensitive nitrogen dioxides sensor. Sens Actuators B 145:592–595

    Article  Google Scholar 

  15. Patil LA, Patil DR (2006) Heterocontact type CuO-modified SnO2 sensor for the detection of a ppm level H2S gas at room temperature. Sens Actuators B 120:316–323

    Article  Google Scholar 

  16. Arbiol J, Morante JR, Bouvier P et al (2006) SnO2/MoO3-nanostructure and alcohol detection. Sens Actuators B 118:156–162

    Article  Google Scholar 

  17. Kim KW, Cho PS, Kim SJ et al (2007) The selective detection of C2H5OH using SnO2–ZnO thin film gas sensors prepared by combinatorial solution deposition. Sens Actuators B 123:318–324

    Article  Google Scholar 

  18. Ji HM, Lu HX, Ma DF et al (2008) Preparation and hydrogen gas sensitive characteristics of highly ordered titania nanotube arrays. Chin Sci Bull 53:1352–1357

    Article  Google Scholar 

  19. Aygün S, Cann D (2005) Response kinetics of doped CuO/ZnO heterocontacts. J Phys Chem B 109:7878–7882

    Article  Google Scholar 

  20. Liu L, Zhang T, Li SC et al (2009) Micro-structure sensors based on ZnO microcrystals with contact-controlled ethanol sensing. Chin Sci Bull 54:4371–4375

    Article  Google Scholar 

  21. Wang XZ (2012) Improved ethanol, acetone and H2 sensing performances of micro-sensors based on loose ZnO nanofibers. Chin Sci Bull 57:4653–4658

    Article  Google Scholar 

  22. Shen RS, Li XP, Xia XC et al (2012) Comparative investigation of three types of ethanol sensor based on NiO–SnO2 composite nanofibers. Chin Sci Bull 57:2087–2093

    Article  Google Scholar 

  23. Jung SJ, Yanagida H (1996) The characterization of a CuO/ZnO heterocontact-type gas sensor having selectivity for CO gas. Sens Actuators B 37:55–60

    Article  Google Scholar 

  24. Baek KK, Tuller HL (1993) Electronic characterization of ZnO/CuO heterojunctions. Sens Actuators B 13:238–240

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (61106050, 21201022, 61205038), the Science Foundation for Young Scholars of Changchun University of Science and Technology (XQNJJ-2011-12), the Scientific and Technological Development Project of Jilin Province (201101103, 201201121, 20120435, 20130203033GX) and the Scientific and Technological Pillar Project of Changchun (11KZ38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qingcheng Liang.

About this article

Cite this article

Liang, Q., Li, D., Gao, S. et al. Room-temperature NH3 sensors with high sensitivity and short response/recovery times. Chin. Sci. Bull. 59, 447–451 (2014). https://doi.org/10.1007/s11434-013-0018-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-013-0018-3

Keywords

Navigation