Advertisement

Chinese Science Bulletin

, Volume 58, Issue 8, pp 853–863 | Cite as

Optical frequency standard based on a single 40Ca+

  • KeLin GaoEmail author
Open Access
Invited Article Atomic & Molecular Physics

Abstract

Research on the development of the optical frequency standard based on trapped and cold 40Ca+ with the 4s 2S1/2-3d 2D5/2 clock transition at 729 nm is reported. A single calcium ion was trapped and laser cooled in the Paul trap and stay in trap for more than 15 days. The linewidth of a 729 nm laser was reduced to less than 10 Hz by locking to a cavity for longer than 50 hours uninterruptedly. The overall systematic uncertainty of the clock transition has been characterized to be better than 6.5×10−16. The absolute frequency of the clock transition was measured at 10−15 level using an optical frequency comb referenced to a Hydrogen maser, which was calibrated to the SI second through the global positioning system (GPS). The frequency value was 411042129776393.0(1.6) Hz after the correction of the systematic shifts.

Keywords

optical frequency standard single calcium ion systematic uncertainty absolute frequency measurement 

References

  1. 1.
    Li R X, Gibble K, Szymaniec K. Improved accuracy of the NPLCsF2 primary frequency standard: Evaluation of distributed cavity phase and microwave lensing frequency shifts. Metrologia, 2011, 48: 283–289CrossRefGoogle Scholar
  2. 2.
    Campbell G K, Ludlow A D, Blatt S, et al. The absolute frequency of the 87Sr optical clock transition. Metrologia, 2008, 45: 539–548CrossRefGoogle Scholar
  3. 3.
    Akatsuka T, Takamoto M, Katori H. Optical lattice clocks with non-interacting bosons and fermions. Nat Phys, 2008, 4: 954–959CrossRefGoogle Scholar
  4. 4.
    Lemke N D, Ludlow A D, Barber Z W, et al. Spin-1/2 optical lattice clock. Phys Rev Lett, 2008, 103: 063001CrossRefGoogle Scholar
  5. 5.
    Poli N, Barber Z W, Lemke N D, et al. Frequency evaluation of the doubly forbidden 1S03P0 transition in bosonic 174Yb. Phys Rev A, 2008, 77: 050501CrossRefGoogle Scholar
  6. 6.
    Margolis H S, Barwood G P, Huang G, et al. Hertz-level measurement of the optical clock frequency in a single 88Sr+ ion. Science, 2004, 306: 1355–1358CrossRefGoogle Scholar
  7. 7.
    Huntemann N, Okhapkin M, Lipphardt B, et al. High-accuracy optical clock based on the octupole transition in 171Yb+. Phys Rev Lett, 2012, 108: 090801CrossRefGoogle Scholar
  8. 8.
    Rosenband T, Hume D B, Schmidt P O, et al. Frequency ratio of Al+ and Hg+ single-ion optical clocks; Metrology at the 17th Decimal Place. Science, 2008, 319: 1808–1812CrossRefGoogle Scholar
  9. 9.
    Chwalla M, Benhelm J, Kim K, et al. Absolute frequency measurement of the 40Ca+ 4s 2S1/2-3d 2D5/2 clock transition. Phys Rev Lett, 2009, 102: 023002CrossRefGoogle Scholar
  10. 10.
    Stalnaker J E, Diddams S A, Fortier T M, et al. Optical-to-microwave frequency comparison with fractional uncertainty of 10−15. Appl Phys B, 2007, 89: 167–176CrossRefGoogle Scholar
  11. 11.
    Chou C W, Hume D B, Koelemeij J C J, et al. Frequency comparison of two high-accuracy Al+ optical clocks. Phys Rev Lett, 2010, 104: 070802CrossRefGoogle Scholar
  12. 12.
    The International Committee for Weights and Measures (CIPM). Recommendation 2 (c2-2009)-(CIPM): Updates to the list of standard frequenciesGoogle Scholar
  13. 13.
    Chen J B. Active optical clock. Chin Sci Bull, 2009, 54: 348–352CrossRefGoogle Scholar
  14. 14.
    Matsubara K, Hayasaka K, Li Y, et al. Frequency measurement of the optical clock transition of 40Ca+ ions with an uncertainty of 10−14 level. Appl. Phys Express, 2008, 1: 067011CrossRefGoogle Scholar
  15. 15.
    Champenois C, Houssin M, Lisowski C, et al. Evaluation of the ultimate performances of a Ca+ single-ion frequency standard. Phys Lett A, 2004, 331: 298–311CrossRefGoogle Scholar
  16. 16.
    Barton P A, Donald C J S, Lucas D M, et al. Measurement of the lifetime of the 3d2D5/2 state in 40Ca+. Phys Rev A, 2000, 62: 032503CrossRefGoogle Scholar
  17. 17.
    Shu H L, Guan H, Huang X R, et al. A single laser cooled trapped 40Ca+ ion in a miniature Paul trap. Chin Phys Lett, 2005, 22: 1641–1644CrossRefGoogle Scholar
  18. 18.
    Shu H L, Guo B, Guan H, et al. Experimental improvement of signal of a single laser-cooled trapped 40Ca+ ion. Chin Phys Lett, 2007, 24: 1217–1219CrossRefGoogle Scholar
  19. 19.
    Guo B, Guan H, Liu Q, et al. Preliminary frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+ ion. Front Phys China, 2009, 4: 144–154CrossRefGoogle Scholar
  20. 20.
    Liu Q, Huang Y, Cao J, et al. Frequency measurement of the electric quadrupole transition in a single laser-cooled 40Ca+. Chin Phys Lett, 2011, 28: 013201CrossRefGoogle Scholar
  21. 21.
    Guan H, Liu Q, Huang Y, et al. A 729 nm laser with ultra-narrow linewidth for probing 4S1/2-3D5/2 clock transition of 40Ca+. Opt Commum, 2011, 284: 217–221CrossRefGoogle Scholar
  22. 22.
    Dehmelt H. Mono-ion oscillator as potential ultimate laser frequency standard. IEEE Trans Instrum Meas, 1982, 31: 83–87CrossRefGoogle Scholar
  23. 23.
    Drever R W P, Hall J L, Kowalski F V. Laser phase and frequency stabilization using an optical resonator. Appl Phys B, 1983, 31: 97–105CrossRefGoogle Scholar
  24. 24.
    Guan H, Guo B, Huang G L, et al. Stabilization of 397 nm and 866 nm external cavity diode lasers for cooling a single calcium ion. Opt Commum, 2007, 274: 182–186CrossRefGoogle Scholar
  25. 25.
    Qu W, Huang Y, Guan H, et al. 397 nm semiconductor laser stabilized with scanning transfer cavity. Chin J Lasers, 2011, 38: 0803008CrossRefGoogle Scholar
  26. 26.
    Udem T, Holzwarth R, Hansch T W, et al. Optical frequency metrology. Nature, 2002, 416: 233–237CrossRefGoogle Scholar
  27. 27.
    Cundiff S T, Ye J. Femtosecond optical frequency combs. Rev Mod Phys, 2003, 75: 325–342CrossRefGoogle Scholar
  28. 28.
    Barwood G, Gao K, Gill P, et al. Development of optical frequency standards based upon the 2S1/2-2D5/2 transition in 88Sr+ and 87Sr+. IEEE Trans Instrum Meas, 2001, 50: 543–547CrossRefGoogle Scholar
  29. 29.
    Bernard J E, Madej A A, Marmet L, et al. Cs-based frequency measurement of a single, trapped ion transition in the visible region of the spectrum. Phys Rev Lett, 1999, 82: 3228–3231CrossRefGoogle Scholar
  30. 30.
    Madej A A, Bernard J E, Dubé P, et al. Absolute frequency of the 88Sr+ 5s 2S1/2-4d 2D5/2 reference transition at 445 THz and evaluation of systematic shifts. P Phys Rev A, 2004, 70: 01250Google Scholar
  31. 31.
    Itano W M. External-field shifts of the Hg optical frequency standard. J Res NIST, 2000, 105: 829–837Google Scholar
  32. 32.
    Huang Y, Liu Q, Cao J, et al. Evaluation of the systematic shifts of a single 40Ca+ ion frequency standard. Phys Rev A, 2011, 84: 053841CrossRefGoogle Scholar
  33. 33.
    Huang Y, Cao J, Liu P, et al. Hertz-level measurement of the 40Ca+ 4s 2S1/2-3d 2D5/2 clock transition frequency with respect to the SI second through GPS. Phys Rev A, 2012, 85: 030503CrossRefGoogle Scholar
  34. 34.
    Berkeland D J, Miller J D, Bergquist J C, et al. Minimization of ion mocromotion in a Paul trap. J Appl Phys, 1998, 83: 5025–5033CrossRefGoogle Scholar
  35. 35.
    Safronova M S, Safronova U I. Blackbody radiation shift, multipole polarizabilities, oscillator strengths, lifetimes, hyperfine constants, and excitation energies in Ca+. Phys Rev A, 2011, 83: 012503CrossRefGoogle Scholar
  36. 36.
    Bureau International des Poids et Mesures (BIPM). Circular T, May & June 2010, http://www1.bipm.org/en/scientific/tai/timeftp.html Google Scholar
  37. 37.
    Matsubara K, Li Y, Nagano S, et al. Absolute frequency measurement of the 40Ca+ clock transition using a LD-based clock laser and UTC(NICT). IEEE Int Freq Contr Symp, 2009, 1 & 2: 751–755Google Scholar

Copyright information

© The Author(s) 2013

Open AccessThis article is distributed under the terms of the Creative Commons Attribution 2.0 International License (https://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Authors and Affiliations

  1. 1.State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Atomic Frequency Standards, Wuhan Institute of Physics and MathematicsChinese Academy of SciencesWuhanChina

Personalised recommendations