Chinese Science Bulletin

, Volume 58, Issue 18, pp 2140–2147 | Cite as

Isolation and characterization of class I MHC genes in the giant panda (Ailuropoda melanoleuca)

  • Ying Zhu
  • DanDan Sun
  • YunFa Ge
  • Bin Yu
  • YiYan Chen
  • QiuHong Wan
Open Access
Article Special Issue Adaptive Evolution and Conservation Ecology of Wild Animals


Artificial breeding is an important project to protect, recover and reintroduce endangered species. Knowledge of the population’s genetic diversity at functional loci is important for the establishment of effective captive breeding programs. The major histocompatibility complex (MHC) genes are ideal candidate genetic markers to inform planned breeding, due to their high levels of polymorphism and importance in the main immune coding region of the vertebrate genome. In this study, we constructed BAC-based contigs and isolated six functional MHC class I genes from the giant panda (Ailuropoda melanoleuca), which we designated Aime-C, Aime-F, Aime-I, Aime-K, Aime-L and Aime-1906. Analyses of the tissue expression patterns and full-length cDNA sequences of these class I genes revealed that Aime-C, -F, -I and -L could be considered classical class I loci, due to their extensive expression patterns and normal exonic structures. In contrast, Aime-K and -1906 appeared to be nonclassical genes based on their tissue-specific expression patterns and the presence of an abnormal exon 7 in both genes. We established techniques for genotyping exons 2 and 3 of the classical loci using locus-specific single strand conformation polymorphism (SSCP) and sequence analysis. In the Chengdu captive population, we identified one monomorphic locus (Aime-F) and three polymorphic loci with different numbers of alleles (4/4/4 exon 2 alleles at Aime-C/I/L and 6/5/5 exon 3 alleles at Aime-C/I/L). The distributions of the Aime-C, -I and -L alleles among members of different families were in good agreement with the known pedigree relationships, suggesting that the genotyping results are reliable. Therefore, the MHC-I genotyping techniques established in this study may provide a powerful tool for the future design of scientific breeding or release/reintroduction programs.


giant panda MHC class I isolation locus-specific genotyping 


  1. 1.
    Ebenhard T. Conservation breeding as a tool for saving animal species from extinction. Trends Ecol Evol, 1995, 10:438–443CrossRefGoogle Scholar
  2. 2.
    Seddon P J, Armstrong D P, Maloney R F. Developing the science of reintroduction biology. Conserv Biol, 2007, 21:303–312CrossRefGoogle Scholar
  3. 3.
    Frankham R. Genetic adaptation to captivity in species conservation programs. Mol Ecol, 2008, 17:325–333CrossRefGoogle Scholar
  4. 4.
    Robert A. Captive breeding genetics and reintroduction success. Biol Conserv, 2009, 142:2915–2922CrossRefGoogle Scholar
  5. 5.
    Chong A Y Y. Genetic variation in the MHC of the Collared peccary: A potential model for the effects of captive breeding on the MHC. Univ Sydney Undergr Res J, 2009, 1:98–116Google Scholar
  6. 6.
    Sommer S. The importance of immune gene variability (MHC) in evolutionary ecology and conservation. Front Zool, 2005, 2:1–18CrossRefGoogle Scholar
  7. 7.
    Frankham R, Ballou J D, Briscoe D A. Introduction to Conservation Genetics. Cambridge: Cambridge University Press, 2002CrossRefGoogle Scholar
  8. 8.
    Klein J. The Natural History of the Major Histocompatibility Complex. New York: Wiley & Sons, 1986Google Scholar
  9. 9.
    Xu T J, Sun Y N, Chen S L. Allelic variation, balancing selection and positive selected sites detected from MHC class I a gene of olive flounder. Genetica, 2010, 138:1251–1259CrossRefGoogle Scholar
  10. 10.
    Bos D H, Waldman B. Evolution by recombination and transspecies polymorphism in the MHC class I gene of Xenopus laevis. Mol Biol Evol, 2006, 23:137–143CrossRefGoogle Scholar
  11. 11.
    Glaberman S, Du Pasquier L, Caccone A, et al. Characterization of a nonclassical class I MHC gene in a reptile, the galápagos marine iguana (Amblyrhynchus cristatus). PLoS One, 2008, 3:1–11CrossRefGoogle Scholar
  12. 12.
    Birch J, Codner G, Guzman E, et al. Genomic location and characterisation of nonclassical MHC class I genes in cattle. Immunogenetics, 2008, 60:267–273CrossRefGoogle Scholar
  13. 13.
    Piertney S, Oliver M. The evolutionary ecology of the major histocompatibility complex. Heredity, 2006, 96:7–21Google Scholar
  14. 14.
    Kassiotis G, Garcia S, Simpson E, et al. Impairment of immunological memory in the absence of MHC despite survival of memory T cells. Nat Immunol, 2002, 3:244–250CrossRefGoogle Scholar
  15. 15.
    Bernatchez L, Landry C. MHC studies in nonmodel vertebrates: What have we learned about natural selection in 15 years? J Evol Biol, 2003, 16: 363–377CrossRefGoogle Scholar
  16. 16.
    Radwan J, Kawalko A, Wojcik J M, et al. MHC-DRB3 variation in a free-living population of the European bison, Bison bonasus. Mol Ecol, 2006, 16:531–540CrossRefGoogle Scholar
  17. 17.
    State Forestry Administration of China. The Third National Survey Report on Giant Panda in China (in Chinese). Beijing: Science Press, 2006Google Scholar
  18. 18.
    Xie Z, Gipps J. The 2012 International Studbook for Giant Panda (Ailuropoda melanoleuca). Beijing: Chinese Association of Zoological Garden, 2012Google Scholar
  19. 19.
    Wan Q H, Zeng C J, Ni X W, et al. Giant panda genomic data provide insight into the birth-and-death process of mammalian major histocompatibility complex class II genes. PLoS One, 2009, 4:e4147CrossRefGoogle Scholar
  20. 20.
    Wan Q H, Zhu L, Wu H, et al. Major histocompatibility complex class II variation in the giant panda (Ailuropoda melanoleuca). Mol Ecol, 2006, 15:2441–2450CrossRefGoogle Scholar
  21. 21.
    Chen Y Y, Zhang Y Y, Zhang H M, et al. Natural selection coupled with intragenic recombination shapes diversity patterns in the major histocompatibility complex class II genes of the giant panda. J Exp Zool B (Mol Dev Evol), 2010, 314B:208–223Google Scholar
  22. 22.
    Wan Q H, Zhang P, Ni X W, et al. A novel HURRAH protocol reveals high numbers of monomorphic MHC class II loci and two asymmetric multi-locus haplotypes in the Père David’s Deer. PLoS One, 2011, 6:e14518CrossRefGoogle Scholar
  23. 23.
    Pan H J, Wan Q H, Fang S G. Molecular characterization of major histocompatibility complex class I genes from the giant panda (Ailuropoda melanoleuca). Immunogenetics, 2008, 60:185–193CrossRefGoogle Scholar
  24. 24.
    Shen F J, Zhang Z H, He W, et al. Microsatellite variability reveals the necessity for genetic input from wild giant pandas (Ailuropoda melanoleuca) into the captive population. Mol Ecol, 2009, 18:1061–1070CrossRefGoogle Scholar
  25. 25.
    Sambrook J, Russell D W. iMolecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor. New York: Cold Spring Harbor Laboratory Press, 2001Google Scholar
  26. 26.
    Zeng C J, Pan H J, Gong S B, et al. Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region. BMC Genomics, 2007, 8:1–10CrossRefGoogle Scholar
  27. 27.
    Sunnucks P, Wilson A C C, Beheregaray L B, et al. SSCP is not so difficult: The application and utility of single-stranded conformation polymorphism in evolutionary biology and molecular ecology. Mol Ecol, 2000, 9:1699–1710CrossRefGoogle Scholar
  28. 28.
    Bjorkman P J, Saper M A, Samraoui B, et al. The foreigh antigen bing site and T cell recognition regions of class I histocompatibility antigens. Nat Immunol, 1987, 329:512–518Google Scholar
  29. 29.
    Rousset F. GENEPOP’007: A complete re-implementation of the GENEPOP software for windows and linux. Mol Ecol Resour, 2008, 8:103–106CrossRefGoogle Scholar
  30. 30.
    Belkhir K, Borsa P, Chikhi L, et al. Genetix version 4.05, Logiciel sous windows TM pour la Génétique des populations, Montpellier: Université de Montpellier II, 2004Google Scholar
  31. 31.
    Kelley J, Walter L, Trowsdale J. Comparative genomics of major histocompatibility complexes. Immunogenetics, 2005, 56:683–695CrossRefGoogle Scholar
  32. 32.
    Kurtz J, Kalbe M, Aeschlimann P B, et al. Major histocompatibility complex diversity influences parasite resistance and innate immunity in sticklebacks. Proc R Soc B, 2004, 271:197–204CrossRefGoogle Scholar
  33. 33.
    Westerdahl H, Waldenstrom J, Hansson B, et al. Associations between malaria and MHC genes in a migratory songbird. Proc R Soc B, 2005, 272:1511–1518CrossRefGoogle Scholar
  34. 34.
    Spurgin L G, Richardson D S. How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc R Soc B, 2010, 277:979–988CrossRefGoogle Scholar

Copyright information

© The Author(s) 2012

Authors and Affiliations

  • Ying Zhu
    • 1
  • DanDan Sun
    • 1
  • YunFa Ge
    • 1
  • Bin Yu
    • 1
  • YiYan Chen
    • 1
  • QiuHong Wan
    • 1
  1. 1.The Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, State Conservation Center for Gene Resources of Endangered Wildlife, College of Life SciencesZhejiang UniversityHangzhouChina

Personalised recommendations