Skip to main content

Advertisement

SpringerLink
Efficient CAN catalyzed synthesis of 1H-indazolo[1,2-b] phthalazine-1,6,11-triones: An eco-friendly protocol
Download PDF
Download PDF
  • Article
  • Open Access
  • Published: 23 March 2012

Efficient CAN catalyzed synthesis of 1H-indazolo[1,2-b] phthalazine-1,6,11-triones: An eco-friendly protocol

  • Kidwai Mazaahir1,
  • Chauhan Ritika1 &
  • Jahan Anwar1 

Chinese Science Bulletin volume 57, pages 2273–2279 (2012)Cite this article

  • 1255 Accesses

  • 55 Citations

  • Metrics details

Abstract

A convenient, economical and green approach to the synthesis of 1H-indazolo[1,2-b]phthalazine-1,6,11-trione derivatives has been achieved via a one-pot protocol using phthalhydrazide, a cyclic-β-diketone and an aldehyde in the presence of a ceric ammonium nitrate catalyst in polyethylene glycol. The simple work up, mild conditions, excellent yields, inexpensive and non-toxic catalyst and simple solvent recyclability render this protocol both attractive and economically viable.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. Zhu J, Bienayme H. Multicomponent Reactions. Wiley-VCH: Weinheim, 2005

    Book  Google Scholar 

  2. Dömling A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem Rev, 2006, 106: 17–89

    Article  Google Scholar 

  3. Ramón D J, Yus M. Asymmetric multicomponent reactions (AMCRs): The new frontier. Angew Chem Int Ed, 2005, 44: 1602–1634

    Article  Google Scholar 

  4. Simon C, Constantieux T, Rodriguez J. Utilisation of 1,3-dicarbonyl derivatives in multicomponent reactions. Eur J Org Chem, 2004, 4957–4980

  5. Orru R V A, de Greef M. Recent advances in solution-phase multicomponent methodology for the synthesis of heterocyclic compounds. Synthesis, 2003, 1471–1499

  6. Bienayme H, Hulme C, Oddon G, et al. Maximizing synthetic efficiency: Multi-component transformations lead the way. Chem Eur J, 2000, 6: 3321–3329

    Article  Google Scholar 

  7. Ulaczyk-Lesanko A, Hall D G. Wanted: New multicomponent reactions for generating libraries of polycyclic natural products. Curr Opin Chem Biol, 2005, 9: 266–276

    Article  Google Scholar 

  8. Weber L. The application of multi-component reactions in drug discovery. Curr Med Chem, 2002, 9: 2085–2093

    Google Scholar 

  9. Hulme C, Gore V. Multi-component reactions: Emerging chemistry in drug discovery “from xylocain to crixivan”. Curr Med Chem, 2003, 10: 51–80

    Article  Google Scholar 

  10. Dömling A, Ugi I. Multicomponent reactions with isocyanides. Angew Chem Int Ed, 2000, 39: 3168–3210

    Article  Google Scholar 

  11. Kappe C O. Recent advances in the Biginelli dihydropyrimidine synthesis. New tricks from an old dog. Acc Chem Res, 2000, 33: 879–888

    Article  Google Scholar 

  12. Franklin E C, Bergstrom F W. Heterocyclic nitrogen compounds PART I. Pentacyclic compounds. Chem Rev, 1935, 16: 305–361

    Google Scholar 

  13. Bergstrom F W. Heterocyclic nitrogen compounds. Part II A. Hexacyclic compounds: Pyridine, quinoline, and isoquinoline. Chem Rev, 1944, 35: 77–277

    Article  Google Scholar 

  14. Lichtenthaler F W. Unsaturated O- and N-heterocycles from carbohydrate feedstocks. Acc Chem Res, 2002, 35: 728–737

    Article  Google Scholar 

  15. Litvinov V P. Multicomponent cascade heterocyclization as a promising route to targeted synthesis of polyfunctional pyridines. Russ Chem Rev, 2003, 72: 69–85

    Article  Google Scholar 

  16. Xu Y, Guo Q X. Syntheses of heterocyclic compounds under microwave irradiation. Heterocycles, 2004, 63: 903–974

    Article  Google Scholar 

  17. Vaughan W R. The chemistry of the phthalazines. Chem Rev, 1948, 43: 447–508

    Article  Google Scholar 

  18. Clement R A. The oxidation of 2,3-dihydrophthalazine-1,4-dione with lead tetraacetate. Phthalazine-1,4-dione and 1,4-dihydropyridazino[ 1,2-b]-phthalazine-6,ll-dione. J Org Chem, 1960, 25: 1724–1727

    Article  Google Scholar 

  19. Indelicato J M, Pasini C E. The acylating potential of γ-Lactam antibacterials: Base hydrolysis of bicyclic pyrazolidinones. J Med Chem, 1988, 31: 1227–1230

    Article  Google Scholar 

  20. Kappe T, Kos C. A facile synthesis of 1-oxo-1H-pyrazolo[1,2-a] pyrazol-4-ium-3-olates. Synthesis, 1989, 629–630

  21. Turk C, Svete J, Stanovnik B, et al. Regioselective 1,3-dipolar cycloadditions of (1Z)-1-(Arylmethylidene)-5,5-dimethyl-3-oxopyrazolidin-1-ium-2-ide azomethine imines to acetylenic dipolarophiles. Helv Chim Acta, 2001, 84: 146–156

    Article  Google Scholar 

  22. Clark M P, Laughlin S K, Laufersweiler M J, et al. Development of orally bioavailable bicyclic pyrazolones as inhibitors of tumor necrosis factor-α production. J Med Chem, 2004, 47: 2724–2727

    Article  Google Scholar 

  23. Grasso S, De Sarro G, De Sarro A, et al. Synthesis and anticonvulsant activity of novel and potent 6,7-methylenedioxyphthalazin-1(2H)-ones. J Med Chem, 2000, 43: 2851–2859

    Article  Google Scholar 

  24. Nomoto Y, Obase H, Takai H, et al. Studies on cardiotonic agents. II. Synthesis of novel phthalazine and 1,2,3-benzotriazine derivatives. Chem Pharm Bull, 1990, 38: 2179–2183

    Google Scholar 

  25. Watanabe N, Kabasawa Y, Takase Y, et al. 4-Benzylamino-1-chloro-6-substituted phthalazines: Synthesis and inhibitory activity toward phosphodiesterase 5. J Med Chem, 1998, 41: 3367–3372

    Article  Google Scholar 

  26. Ryu C K, Park R E, Ma M Y, et al. Synthesis and antifungal activity of 6-arylamino-phthalazine-5,8-diones and 6,7-bis(arylthio)-phthalazine-5,8-diones. Bioorg Med Chem Lett, 2007, 17: 2577–2580

    Article  Google Scholar 

  27. Li J, Zhao Y F, Yuan X Y, et al. Synthesis and anticancer activities of novel 1,4-disubstituted phthalazines. Molecules, 2006, 11: 574–582

    Article  Google Scholar 

  28. Sinkkonen J, Ovcharenko V, Zelenin K N, et al. 1H and 13C NMR study of 1-hydrazino-2,3-dihydro-1H-pyrazolo[1,2-a]pyridazine-5,8-diones and -1H-pyrazolo[1,2-b]phthalazine-5,10-diones and their ring-chain tautomerism. Eur J Org Chem, 2002, 2046–2053

  29. Mavel S, Thery I, Gueiffier A. Synthesis of imidazo[2,1-a] phthalazines, potential inhibitors of p38 MAP kinase. Prediction of binding affinities of protein ligands. Arch De Pharm, 2002, 335: 7–14

    Article  Google Scholar 

  30. Carling R W, Moore K W, Street L J, et al. 3-Phenyl-6-(2-pyridyl) methyloxy-1,2,4-triazolo[3,4-a]phthalazines and Analogues: High affinity γ-aminobutyric acid—A benzodiazepine receptor ligands with α2, α3, and α5-subtype binding selectivity over α1. J Med Chem, 2004, 47: 1807–1822

    Article  Google Scholar 

  31. Street L J, Sternfeld F, Jelley R A, et al. Synthesis and biological evaluation of 3-heterocyclyl-7,8,9,10-tetrahydro (7,10-ethano)-1,2,4-triazolo[3,4-a]phthalazines and analogues as subtype-selective inverse agonists for the GABAAα5. benzodiazepine binding site. J Med Chem, 2004, 47: 3642–3657

    Google Scholar 

  32. Imamura Y, Noda A, Imamura T, et al. A novel methylthio metabolite of s-triazolo[3,4-a]phthalazine, a lead compound for the development of antianxiety drugs, in rats. Life Sci, 2003, 74: 29–36

    Article  Google Scholar 

  33. Kim J S, Lee H J, Suh M E, et al. Synthesis and cytotoxicity of 1-substituted 2-methyl-1H-imidazo[4,5-g]phthalazine-4,9-dione derivatives. Bioorg Med Chem, 2004, 12: 3683–3686

    Article  Google Scholar 

  34. Lebsack A D, Gunzner J, Wang B, et al. Identification and synthesis of [1,2,4]triazolo[3,4-a]phthalazine derivatives as high-affinity ligands to the a2δ-1 subunit of voltage gated calcium channel. Bioorg Med Chem Lett, 2004, 14: 2463–2467

    Google Scholar 

  35. Wu H, Chen X M, Wan Y, et al. Synthesis and luminescence of 7-amino-2H-indazolo[2,1-b]phthalazine-1,6,11(13H)-triones catalyzed by silica sulfuric acid. Lett Org Chem, 2009, 6: 219–223

    Article  Google Scholar 

  36. Hwang J Y, Choi H S, Gong Y D. Solid-phase synthesis of [1,2,4]triazolo[3,4-a]phthalazine and tetrazolo[5,1-a]phthalazine derivatives. Tetrahedron Lett, 2005, 46: 3107–3110

    Article  Google Scholar 

  37. Shaterian H R, Ghashang M, Feyzi M, et al. Silica sulfuric acid as an efficient catalyst for the preparation of 2H-indazolo[2,1-b]phthalazine-triones. Appl Catal A, 2008, 345: 128–133

    Article  Google Scholar 

  38. Wang H J, Zhang X N, Zhang Z H, et al. Highly efficient threecomponent synthesis of 1H-indazolo[1,2-b]phthalazinetrione derivatives catalyzed by heteropolyacids. Monatsh Chem, 2010, 141: 425–430

    Article  Google Scholar 

  39. Fazaeli R, Aliyan H, Fazaeli N, et al. Heteropoly acid in ionic liquid—An efficient catalyst for the preparation of 2H-indazolo [2,1-b]phthalazine-triones. Open Catal J, 2010, 3: 14–18

    Article  Google Scholar 

  40. Mosaddegh E, Hassankhani A. A rapid, one-pot, four-component route to 2H-indazolo[2,1-b]-phthalazine-triones. Tetrahedron Lett, 2011, 52: 488–490

    Article  Google Scholar 

  41. Sayyafi M, Seyyedhamzeh M, Khavasi H R, et al. One-pot, threecomponent route to 2H-indazolo[2,1-b]phthalazine-triones. Tetrahedron, 2008, 64: 2375–2378

    Article  Google Scholar 

  42. Nair V, Deepthi A. Cerium (IV) ammonium nitrates: A versatile single-electron oxidant. Chem Rev, 2007, 107: 1862–1891

    Article  Google Scholar 

  43. Nair V, Balagopal L, Rajan R, et al. Recent advances in synthetic transformations mediated by cerium(IV) ammonium nitrate. Acc Chem Res, 2004, 37: 21–30

    Article  Google Scholar 

  44. More S V, Sastry M N V, Yao C F, et al. Cerium (IV) ammonium nitrate (CAN) as a catalyst in tap water: A simple, proficient and green approach for the synthesis of quinoxalines. Green Chem, 2006, 8: 91–95

    Article  Google Scholar 

  45. Surendra K, Krishnaveni N S, Rao K R, et al. A mild and efficient procedure for the oxidation of epoxides and aziridines using cerium(IV) ammonium nitrate and NBS. Tetrahedron Lett, 2005, 46: 4111–4113

    Article  Google Scholar 

  46. Chen J, Spear S K, Huddleston J G, et al. Polyethylene glycol and solutions of polyethylene glycol as green reaction media. Green Chem, 2005, 7: 64–82

    Article  Google Scholar 

  47. Zhang Z H, Yin L, Wang Y M, et al. Indium tribromide in poly(ethylene glycol) (PEG): A novel and efficient recycle system for chemoselective deprotection of 1,1-diacetates. Green Chem, 2004, 6: 563–565

    Article  Google Scholar 

  48. Kumar R, Chaudhary P, Nimesh S, et al. Polyethylene glycol as a non-ionic liquid solvent for michael addition reaction of amines to conjugated alkenes. Green Chem, 2006, 8: 356–358

    Article  Google Scholar 

  49. Harris J M. Poly (Ethylene Glycol) Chemistry. In Biotechnological Applications. New York: Plenum Press, 1992. 3

    Google Scholar 

  50. Harris J M, Zalipsky S. Poly(Ethylene Glycol): Chemistry and Biological Applications (ACS Symposium). Washington DC: American Chemical Society, 1998

    Google Scholar 

  51. Mao J, Guo J, Fang F, et al. Highly efficient copper(0)-catalyzed Suzukie Miyaura cross-coupling reactions in reusable PEG-400. Tetrahedron, 2008, 64: 3905–3911

    Article  Google Scholar 

  52. Mukhopadhyay C, Tapaswi P K. PEG-mediated catalyst-free expeditious synthesis of 2-substituted benzimidazoles and bis-benzimidazoles under solvent-less conditions. Tetrahedron Lett, 2008, 49: 6237–6240

    Article  Google Scholar 

  53. Kouznetsov V V, Merchan Arenas D R, Romero Bohorquez A R. PEG-400 as green reaction medium for Lewis acid-promoted cycloaddition reactions with isoeugenol and anethole. Tetrahedron Lett, 2008, 49: 3097–3100

    Google Scholar 

  54. Kidwai M, Bhatnagar D. Ceric ammonium nitrate (CAN) catalyzed synthesis of N-substituted decahydroacridine-1,8-diones in PEG. Tetrahedron Lett, 2010, 51: 2700–2703

    Article  Google Scholar 

  55. Kidwai M, Bhatnagar D, Chauhan R. Potassium carbonate-mediated green and efficient synthesis of imidazo[2,1-b]-1,3,4-thiadiazoles using PEG as solvent. J Heterocycl Chem, 2011, doi: 10.1002/jhet.1037

  56. Kidwai M, Chauhan R, Bhatnagar D. Eco-friendly synthesis of 2-aminothiazoles using Nafion-H as a recyclable catalyst in PEG-water solvent system. J Sulf Chem, 2011, 32: 37–44

    Article  Google Scholar 

  57. Ghorbani-Vaghei R, Karimi-Nami R, Toghraei-Semiromi Z, et al. One-pot synthesis of aliphatic and aromatic 2H-indazolo[2,1-b] phthalazine-triones catalyzed by N-halosulfonamides under solvent-free conditions. Tetrahedron, 2011, 67: 1930–1937

    Article  Google Scholar 

  58. Sabitha G, Srinivas C, Raghavendar A, et al. Phosphomolybdic acid (PMA)-SiO2 as a heterogeneous solid acid catalyst for the one-pot synthesis of 2H-indazolo[1,2-b]phthalazine-triones. Helv Chim Acta, 2010, 93: 1375–1380

    Article  Google Scholar 

  59. Khurana J M, Magoo D. Efficient one-pot synthesis of 2Hindazolo[ 2,1-b]phthalazine-triones by catalytic H2SO4 in waterethanol or ionic liquid. Tetrahedron Lett, 2009, 50: 7300–7303

    Article  Google Scholar 

  60. Nagarapu L, Bantu R, Mereyala H B, et al. TMSCl-mediated one-pot, three-component synthesis of 2H-indazolo[2,1-b]phthalazine-triones. J Heterocycl Chem, 2009, 46: 728–731

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Green Chemistry Research Laboratory, Department of Chemistry, University of Delhi, Delhi, 110007, India

    Kidwai Mazaahir, Chauhan Ritika & Jahan Anwar

Authors
  1. Kidwai Mazaahir
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Chauhan Ritika
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jahan Anwar
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Kidwai Mazaahir.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Mazaahir, K., Ritika, C. & Anwar, J. Efficient CAN catalyzed synthesis of 1H-indazolo[1,2-b] phthalazine-1,6,11-triones: An eco-friendly protocol. Chin. Sci. Bull. 57, 2273–2279 (2012). https://doi.org/10.1007/s11434-012-5081-7

Download citation

  • Received: 12 August 2011

  • Accepted: 08 October 2011

  • Published: 23 March 2012

  • Issue Date: June 2012

  • DOI: https://doi.org/10.1007/s11434-012-5081-7

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • ceric ammonium nitrate
  • polyethylene glycol
  • 1H-indazolo[1,2-b]phthalazine-1,6,11-triones
  • recyclability
  • green chemistry
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.