A review of TiO2 nanoparticles

Abstract

Climate change and the consumption of non-renewable resources are considered as the greatest problems facing humankind. Because of this, photocatalysis research has been rapidly expanding. TiO2 nanoparticles have been extensively investigated for photocatalytic applications including the decomposition of organic compounds and production of H2 as a fuel using solar energy. This article reviews the structure and electronic properties of TiO2, compares TiO2 with other common semiconductors used for photocatalytic applications and clarifies the advantages of using TiO2 nanoparticles. TiO2 is considered close to an ideal semiconductor for photocatalysis but possesses certain limitations such as poor absorption of visible radiation and rapid recombination of photogenerated electron/hole pairs. In this review article, various methods used to enhance the photocatalytic characteristics of TiO2 including dye sensitization, doping, coupling and capping are discussed. Environmental and energy applications of TiO2, including photocatalytic treatment of wastewater, pesticide degradation and water splitting to produce hydrogen have been summarized.

References

  1. 1

    Kato S, Masuo F. Titanium dioxide-photocatalyzed oxidation. I. Titanium dioxide-photocatalyzed liquid phase oxidation of tetralin. Kogyo Kagaku Zasshi, 1964, 67: 42–50

    Google Scholar 

  2. 2

    McLintock S, Ritchie M. Reactions on titanium dioxide; photoadsorption and oxidation of ethylene and propylene. Trans Faraday Soc, 1965, 61: 1007–1016

    Article  Google Scholar 

  3. 3

    Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238: 37–38

    Article  Google Scholar 

  4. 4

    Frank S N, Bard A J. Heterogeneous photocatalytic oxidation of cyanide ion in aqueous solutions at titanium dioxide powder. J Am Chem Soc, 1977, 99: 303–304

    Article  Google Scholar 

  5. 5

    Schrauzer G N, Guth T D. Photocatalytic reactions. 1. Photolysis of water and photoreduction of nitrogen on titanium dioxide. J Am Chem Soc, 1977, 99: 7189–7193

    Article  Google Scholar 

  6. 6

    Schrauzer G N, Strampach N, Hui L N. Nitrogen photoreduction on desert sands under sterile conditions. Proc Natl Acad Sci USA, 1983, 80: 3873–3876

    Article  Google Scholar 

  7. 7

    Kreutler B, Bard A J. Heterogenous photocatalytic preparation of supported catalyst. Photodeposition of platinum on titanium dioxide powder and other substrates. J Am Chem Soc, 1978, 100: 4317–4318

    Article  Google Scholar 

  8. 8

    Hsiao C Y, Lee C L, Ollis D F. Heterogenous photocatalysis: Degradation of dilute solution of dichloromethane (CH2Cl2), chloroform (CHCl3), and carbon tetrachloride (CCl4) with illuminated TiO2 photocatalyst. J Catal, 1983, 82: 418–423

    Article  Google Scholar 

  9. 9

    Matsunaga T, Tomato R, Nakajima T, et al. Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol Lett, 1985, 29: 211–214

    Article  Google Scholar 

  10. 10

    Fujishima A, Ohtsuki J, Yamashita T, et al. Behavior of tumor cells on photoexcited semiconductor surface. Photomed Photobiol, 1986, 8: 45–46

    Google Scholar 

  11. 11

    Regan O, Grätzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 film. Nature, 1991, 353: 737–740

    Article  Google Scholar 

  12. 12

    Fujishima A, Rao T N, Tryk D A. Titanium dioxide photocatalysis. J Photochem Photobiol C Photochem Rev, 2000, 1: 1–21

    Article  Google Scholar 

  13. 13

    Wang R, Hashimoto K, Fujishima A, et al. Light-induced amphiphilic surfaces. Nature, 1997, 388: 431–432

    Article  Google Scholar 

  14. 14

    Watson S, Beydoun D, Amal R. Synthesis of a novel magnetic photocatalyst by direct deposition of nanosized TiO2 crystals onto a magnetic core. J Photochem Photobiol A Chemistry, 2002, 148: 303–311

    Article  Google Scholar 

  15. 15

    Sonawane R S, Kale B B, Dongare M K. Preparation and photo-catalytic activity of Fe-TiO2 thin films prepared by sol-gel dip coating. Mater Chem Phys, 2004, 85: 52–57

    Article  Google Scholar 

  16. 16

    Sreethawong T, Suzuki Y, Yoshikawa S. Synthesis, characterization, and photocatalytic activity for hydrogen evolution of nanocrystalline mesoporous titania prepared by surfactant-assisted templating sol-gel process. J Solid State Chem, 2005, 178: 329–338

    Article  Google Scholar 

  17. 17

    Diamandescu L, Vasiliu F, Tarabasanu-Mihaila D, et al. Structural and photocatalytic properties of iron- and europium-doped TiO2 nanoparticles obtained under hydrothermal conditions. Mater Chem Phys, 2008, 112: 146–153

    Article  Google Scholar 

  18. 18

    Lai T Y, Lee W C. Killing of cancer cell line by photoexcitation of folic acid-modified titanium dioxidenanoparticles. J Photochem Photobiol A Chem, 2009, 204: 148–153

    Article  Google Scholar 

  19. 19

    Mizukoshi Y, Ohtsu N, Semboshi S, et al. Visible light responses of sulfur-doped rutile titanium dioxide photocatalysts fabricated by anodic oxidation. App Cat B Environ, 2009, 91: 152–156

    Article  Google Scholar 

  20. 20

    Wang C, Ao Y, Wang P, et al. A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light. Colloid Surf A: Physicochem Eng Aspects, 2010, 360: 184–189

    Article  Google Scholar 

  21. 21

    Kaewgun S, Lee B I. Deactivation and regeneration of visible light active brookite titania in photocatalytic degradation of organic dye. J Photochem Photobiol A: Chem, 2010, 210: 162–167

    Article  Google Scholar 

  22. 22

    Rocha O R, Dantas R F, Duarte M M M B, et al. Oil sludge treatment by photocatalysis applying black and white light. Chem Eng J, 2010, 157: 80–85

    Article  Google Scholar 

  23. 23

    Carp O, Huisman C L, Reller A. Photoinduced reactivity of titanium dioxide. Prog in Solid State Chem, 2004, 32: 33–117

    Article  Google Scholar 

  24. 24

    Mor G K, Varghese O K, Paulose M, et al. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Solar Energ Mater Solar Cell, 2006, 90: 2011–2075

    Article  Google Scholar 

  25. 25

    Chen X, Mao S S. Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem Rev, 2007, 107: 2891–2959

    Article  Google Scholar 

  26. 26

    Thompson T L, Yates Jr J T. Surface science studies of the photoactivation of TiO2-New photochemical processes. Chem Rev, 2006, 106: 4428–4453

    Article  Google Scholar 

  27. 27

    Diebold U. The surface science of titanium dioxide. Sur Sci Rep, 2003, 48: 53–229

    Article  Google Scholar 

  28. 28

    Linsebigler A L, Lu G, Yates J T. Photocatalysis on TiO2 surfaces: Principles, mechanisms, and selected results. Chem Rev, 1995, 95: 735–758

    Article  Google Scholar 

  29. 29

    Simons P Y, Dachille F. The structure of TiO2 II, a high-pressure phase of TiO2. Acta Cryst, 1967, 23: 334–336

    Article  Google Scholar 

  30. 30

    Latroche M, Brohan L, Marchand R, et al. New hollandite oxides: TiO2(H) and K0.06TiO2. J Solid State Chem, 1989, 81: 78–82

    Article  Google Scholar 

  31. 31

    Cromer D T, Herrington K. The structures of anatase and rutile. J Am Chem Soc, 1955, 77: 4708–4709

    Article  Google Scholar 

  32. 32

    Baur V W H. Atomabstände und bindungswinkel im brookit, TiO2. Acta Crystallogr, 1961, 14: 214–216

    Article  Google Scholar 

  33. 33

    Mo S, Ching W. Electronic and optical properties of three phases of titanium dioxide: Rutile, anatase and brookite. Phys Rev B, 1995, 51: 13023–13032

    Article  Google Scholar 

  34. 34

    Norotsky A, Jamieson J C, Kleppa O J. Enthalpy of transformation of a high pressure polymorph of titanium dioxide to the rutile modification. Science, 1967, 158: 338–389

    Google Scholar 

  35. 35

    Zhang Q, Gao L, Guo J. Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B Environ, 2000, 26: 207–215

    Article  Google Scholar 

  36. 36

    Sclafani A, Palmisano L, Schiavello M. Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion. J Phys Chem, 1990, 94: 829–832

    Article  Google Scholar 

  37. 37

    Muscat J, Swamy V, Harrison N M. First-principles calculations of the phase stability of TiO2. Phy Rev B, 2002, 65: 1–15

    Google Scholar 

  38. 38

    Tanaka K, Capule M F V, Hisanaga T. Effect of crystallinity of TiO2 on its photocatalytic action. Chem Phys Lett, 1991, 187: 73–76

    Article  Google Scholar 

  39. 39

    Selloni A. Anatase shows its reactive side. Nature Mater, 2008, 7: 613–615

    Article  Google Scholar 

  40. 40

    Yang H G, Sun C H, Qiao S Z, et al. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature, 2008, 453: 638–641

    Article  Google Scholar 

  41. 41

    Wunderlich W, Oekermann T, Miao L, et al. Electronic properties of nano-porous TiO2-and ZnO-thin films-comparison of simulations and experiments. J Ceram Process Res, 2004, 5: 343–354

    Google Scholar 

  42. 42

    Paxton A T, Thiên-Nga L. Electronic structure of reduced titanium dioxide. Phys Rev B, 1998, 57: 1579–1584

    Article  Google Scholar 

  43. 43

    Banerjee S, Gopal J, Muraleedharan P, et al. Physics and chemistry of photocatalytic titanium dioxide: Visualization of bactericidal activity using atomic force microscopy. Current Sci, 2006, 90: 1378–1383

    Google Scholar 

  44. 44

    Li G, Chen L, Graham M E, et al. A comparison of mixed phase titania photocatalysts prepared by physical and chemical methods: The importance of the solid-solid interface. J Mol Catal A Chem, 2007, 275: 30–35

    Article  Google Scholar 

  45. 45

    You X, Chen F, Zhang J. Effects of calcination on the physical and photocatalytic properties of TiO2 powders prepared by sol-gel template method. J Sol-Gel Sci Tech, 2005, 34: 181–187

    Article  Google Scholar 

  46. 46

    Hu Y, Tsai H L, Huang C L. Phase transformation of precipitated TiO2 nanoparticles. Mater Sci Eng A, 2003, 344: 209–214

    Article  Google Scholar 

  47. 47

    Wang J, Li R H, Zhang Z H, et al. Heat treatment of nanometer anatase powder and its photocatalytic activity for degradation of acid red B dye under visible light irradiation. Inorg Mater, 2008, 44: 608–614

    Article  Google Scholar 

  48. 48

    Ohtani B, Ogawa Y, Nishimoto S. Photocatalytic activity of amorphous-anatase mixture of Titanium(IV) oxide particles suspended in aqueous solutions. J Phys Chem B, 1993, 101: 3746–3752

    Article  Google Scholar 

  49. 49

    Yu J, Zhao X, Zhao Q. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method. Mater Chem Phys, 2001, 69: 25–29

    Article  Google Scholar 

  50. 50

    Han H, Ba R. Buoyant photocatalyst with greatly enhanced visible-light activity prepared through a low temperature hydrothermal method. Ind Eng Chem Res, 2009, 48: 2891–2898

    Article  Google Scholar 

  51. 51

    Hoffmann M R, Martin S T, Choi W, et al. Environmental applications of semiconductor photocatalysis. Chem Rev, 1995, 95: 69–96

    Article  Google Scholar 

  52. 52

    Marcus R A. Reorganization free energy for electron transfers at liquid-liquid and dielectric semiconductor-liquid interfaces. J Phys Chem, 1990, 94: 1050–1055

    Article  Google Scholar 

  53. 53

    Mills A, Hunte A J. An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem, 1997, 108: 1–35

    Article  Google Scholar 

  54. 54

    Dawson G, Chen W, Zhang T, et al. A study on the effect of starting material phase on the production of trititanate nanotubes. Solid State Sci, 2010, 12: 2170–2176

    Article  Google Scholar 

  55. 55

    Yana J, Fenga S, Lua H, et al. Alcohol induced liquid-phase synthesis of rutile titania nanotubes. Mat Sci Eng B, 2010, 172: 114–120

    Article  Google Scholar 

  56. 56

    Mozia S. Application of temperature modified titanate nanotubes for removal of an azo dye from water in a hybrid photocatalysis-MD process. Catalysis Today, 2010, 156: 198–207

    Article  Google Scholar 

  57. 57

    Pradhan S K, Reucroft P J, Yang F, et al. Growth of TiO2 nanorods by metalorganic chemical vapor deposition. J Crystal Growth, 2003, 256: 83–88

    Article  Google Scholar 

  58. 58

    Limmer S J, Chou T P, Cao G Z. A study on the growth of TiO2 nanorods using sol electrophoresis. J Mat Sci, 2004, 39: 895–901

    Article  Google Scholar 

  59. 59

    Attar A S, Ghamsari M S, Hajiesmaeilbaigi F, et al. Synthesis and characterization of anatase and rutile TiO2 nanorods by tem plate-assisted method. J Mat Sci, 2008, 43: 5924–5929

    Article  Google Scholar 

  60. 60

    Hagfeldtt A, Grätzel M. Light-induced redox reactions in nanocrystalline systems. Chem Rev, 1995, 95: 49–68

    Article  Google Scholar 

  61. 61

    Bahnemann D W, Kormann C, Hoffmann M R. Preparation and characterization of quantum size zinc oxide: A detailed spectroscopic study. J Phys Chem, 1987, 91: 3789–3798

    Article  Google Scholar 

  62. 62

    Sivula K, Formal F L, Grätzel M. WO3-Fe2O3 Photoanodes for water splitting: A host scaffold, guest absorber approach. Chem Mater, 2009, 21: 2862–2867

    Article  Google Scholar 

  63. 63

    Miller R J D, McLendon G L, Nozik A J, et al. Surface Electron-transfer Processes. New York: VCH, 1995

    Google Scholar 

  64. 64

    Nishikiori H, Qian W, El-Sayed M A, et al. Change in titania structure from amorphousness to crystalline increasing photoinduced electron-transfer rate in dye-titania system. J Phys Chem C Lett, 2007, 111: 9008–9011

    Article  Google Scholar 

  65. 65

    Benkö G, Skårman B, Wallenberg R, et al. Particle size and crystallinity dependent electron injection in fluorescein 27-sensitized TiO2 films. J Phys Chem B, 2003, 107: 1370–1375

    Article  Google Scholar 

  66. 66

    Li X Z, Zhao W, Zhao J C. Visible light-sensitized semiconductor photocatalytic degradation of 2,4-dichlorophenol. Sci China Ser B-Chem, 2002, 45: 421–425

    Article  Google Scholar 

  67. 67

    Hirano K, Suzuki E, Ishikawa A. Sensitization of TiO2 particles by dyes to achieve H2 evolution by visible light. J Photochem Photobiol A Chem, 2000, 136: 157–161

    Article  Google Scholar 

  68. 68

    Kay A, Grätzel M. Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder. Sol Energy Mater Sol Cells, 1996, 44: 99–117

    Article  Google Scholar 

  69. 69

    Grätzel M. Dye-sensitized solar cells. J Photochem Photobiol C Photochem Rev, 2003, 4: 145–153

    Article  Google Scholar 

  70. 70

    Wu T, Lin T, Zhao J, et al. TiO2-assisted photodegradation of dyes. 9. Photooxidation of a squarylium cyanine dye in aqueous dispersions under visible light irradiation. Environ Sci Technol, 1999, 33: 1379–1387

    Article  Google Scholar 

  71. 71

    Burda C, Lou Y, Chen X, et al. Enhanced nitrogen doping in TiO2 nanoparticles. Nano Lett, 2003, 3: 1049–1051

    Article  Google Scholar 

  72. 72

    Szaciłowski K, Macyk W, Drzewiecka-Matuszek A, et al. Bioinorganic photochemistry: Frontiers and mechanisms. Chem Rev, 2005, 105: 2647–2694

    Article  Google Scholar 

  73. 73

    Grätzel M, Howe R F. Electron paramagnetic resonance studies of doped TiO2 colloids. J Phys Chem, 1990, 94: 2566–2572

    Article  Google Scholar 

  74. 74

    Choi Y, Termin A, Hoffmann M R. The role of metal ion dopants in quantum-sized TiO2: Correlation between photoreactivity and charge carrier recombination dynamics. J Phys Chem, 1994, 98: 13669–13679

    Article  Google Scholar 

  75. 75

    Joshi M M, Labhsetwar N K, Mangrulkar P A, et al. Visible light induced photoreduction of methyl orange by N-doped mesoporous titania. App Catal A General, 2009, 357: 26–33

    Article  Google Scholar 

  76. 76

    Maruska H P, Ghosh A K. Transition-metal dopants for extending the response of titanate photoelectrolysis anodes. Sol Energy Mater, 1979, 1: 237–247

    Article  Google Scholar 

  77. 77

    Gautron J, Lemasson P, Marucco J M. Correlation between the non-stoichiometry of titanium dioxide and its photoelectrochemical behaviour. Faraday Discuss Chem Soc, 1981, 70: 81–91

    Article  Google Scholar 

  78. 78

    Fox M A, Dulay M T. Heterogeneous photocatalysis. Chem Rev, 1995, 93: 341–357

    Article  Google Scholar 

  79. 79

    Xin B, Ren Z, Wang P, et al. Study on the mechanisms of photoinduced carriers separation and recombination for Fe3+-TiO2 photocatalysts. App Surf Sci, 2007, 253: 4390–4395

    Article  Google Scholar 

  80. 80

    Li R, Chen W, Wang W. Magnetoswitchable controlled photocatalytic system using ferromagnetic Fe-doped titania nanorods photocatalysts with enhanced photoactivity. Sep Purif Technol, 2009, 66: 171–176

    Article  Google Scholar 

  81. 81

    Periyasami V, Chinnathambi M, Chinnathambi S, et al. Photocatalytic activity of iron doped nanocrystalline titania for the oxidative degradation of 2,4,6-trichlorophenol. Catal Today, 2009, 141: 220–224

    Article  Google Scholar 

  82. 82

    Khan M A, Han D H, Yang O B. Enhanced photoresponse towards visible light in Ru doped titania nanotube. Appl Surf Sci, 2009, 255: 3687–3690

    Article  Google Scholar 

  83. 83

    Prasad G K, Singh B, Ganesan K, et al. Modified titania nanotubes for decontamination of sulphur mustard. J Hazard Mater, 2009, 167: 1192–1197

    Article  Google Scholar 

  84. 84

    El-Bahy Z M, Ismail A A, Mohamed R M. Enhancement of titania by doping rare earth for photodegradation of organic dye (Direct blue). J Hazard Mater, 2009, 166: 138–143

    Article  Google Scholar 

  85. 85

    Wang C, Ao Y, Wang P, et al. Photocatalytic performance of Gd ion modified titania porous hollow spheres under visible light. Mat Lett, 2010, 64: 1003–1006

    Article  Google Scholar 

  86. 86

    Wang C, Ao Y, Wang P, et al. Preparation, characterization, photocatalytic properties of titania hollow sphere doped with cerium. J Hazard Mater, 2010, 178: 517–521

    Article  Google Scholar 

  87. 87

    Rupa A V, Divakar D, Sivakumar T. Titania and noble metals deposited titania catalysts in the photodegradation of tartrazine. Catal Lett, 2009, 132: 259–267

    Article  Google Scholar 

  88. 88

    Papp J, Shen H S, Kershaw R, et al. Titanium(IV) oxide photocatalysts with palladium. Chem Mater, 1993, 5: 284–288

    Article  Google Scholar 

  89. 89

    Thampi K R, Kiwi J, Grätzel M. Methanation and photomethanation of carbon dioxide at room temperature and atmospheric pressure. Nature, 1987, 327: 506–508

    Article  Google Scholar 

  90. 90

    Adachi K, Ohta K, Mizuno T. Photocatalytic reduction of carbon dioxide to hydrocarbon using copper-loaded titanium dioxide. Sol Energ, 1994, 53: 187–190

    Article  Google Scholar 

  91. 91

    Wong W K, Malati M A. Doped TiO2 for solar energy applications. Sol Energy, 1986, 36: 163–168

    Article  Google Scholar 

  92. 92

    Wu N L, Lee M S. Enhanced TiO2 photocatalysis by Cu in hydrogen production from aqueous methanol solution. Inter J Hydro Energ, 2004, 29: 1601–1605

    Article  Google Scholar 

  93. 93

    Turner M, Golovko V B, Vaughan O P H, et al. Selective oxidation with dioxygen by gold nanoparticle catalysts derived from 55-atom clusters. Nature, 2008, 454: 981–983

    Article  Google Scholar 

  94. 94

    Sakthivel S, Shankar M V, Palanichamy M, et al. Enhancement of photocatalytic activity by metal deposition: Characterization and photonic efficiency of Pt, Au and Pd deposited on TiO2 catalyst. Water Res, 2004, 38: 3001–3008

    Article  Google Scholar 

  95. 95

    Xu J, Ao Y, Chen M, et al. Low-temperature preparation of Boron-doped titania by hydrothermal method and its photocatalytic activity. J Alloy Comp, 2009, 484: 73–79

    Article  Google Scholar 

  96. 96

    Xu J, Ao Y, Chen M. Preparation of B-doped titania hollow sphere and its photocatalytic activity under visible light. Mat Lett, 2009, 63: 2442–2444

    Article  Google Scholar 

  97. 97

    Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 293: 269–271

  98. 98

    Diwald O, Thompson T L, Goralski E G, et al. The effect of nitrogen ion implantation on the photoactivity of TiO2 rutile single crystals. J Phys Chem B, 2004, 108: 52–57

    Article  Google Scholar 

  99. 99

    Ao Y, Xu J, Zhang S, et al. A one-pot method to prepare N-doped titania hollow spheres with high photocatalytic activity under visible light. Appl Surf Sci, 2010, 256: 2754–2758

    Article  Google Scholar 

  100. 100

    Dong L, Cao G X, Ma Y, et al. Enhanced photocatalytic degradation properties of nitrogen-doped titania nanotube arrays. Trans Nonferrous Met Soc China, 2009, 19: 1583–1587

    Article  Google Scholar 

  101. 101

    Yu J C, Yu J G, Ho W K, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powder. Chem Mater, 2002, 14: 3808–3816

    Article  Google Scholar 

  102. 102

    Sakthivel S, Kisch H. Daylight photocatalysis by carbon-modified titanium dioxide. Angrew Chem Int Ed, 2003, 42: 4908–4911

    Article  Google Scholar 

  103. 103

    Park J H, Kim S, Bard A J. Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett, 2006, 6: 24–28

    Article  Google Scholar 

  104. 104

    Meng N, Leung M K H, Leung D Y C, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sust Energ Rev, 2007 11: 401–425

    Article  Google Scholar 

  105. 105

    Yang P, Lu C, Hua N, et al. Titanium dioxide nanoparticles co-doped with Fe3+ and Eu3+ ions for photocatalysis. Mater Lett, 2002, 57: 794–801

    Article  Google Scholar 

  106. 106

    Vasiliu F, Diamandescu L, Macovei D, et al. Fe-and Eu-doped TiO2 photocatalytical materials prepared by high energy ball milling. Top Catal, 2009, 52: 544–556

    Article  Google Scholar 

  107. 107

    Song K, Zhou J, Bao J, et al. Photocatalytic activity of (copper, nitrogen)-codoped titanium dioxide nanoparticles. J Am Ceram Soc, 2008, 91: 1369–1371

    Article  Google Scholar 

  108. 108

    Xu J, Ao Y, Fu D. A novel Ce, C-codoped TiO2 nanoparticles and its photocatalytic activity under visible light. Appl Surf Sci, 2009, 256: 884–888

    Article  Google Scholar 

  109. 109

    Shen X Z, Liu Z C, Xie S M, et al. Degradation of nitrobenzene using titania photocatalyst co-doped with nitrogen and cerium under visible light illumination. J Hazard Mater, 2009, 162: 1193–1198

    Article  Google Scholar 

  110. 110

    Yang X, Ma F, Li K, et al. Mixed phase titania nanocomposite codoped with metallic silver and vanadium oxide: New efficient photocatalyst for dye degradation. J Hazard Materer, 2010, 175: 429–438

    Article  Google Scholar 

  111. 111

    Vogel R, Hoyer P, Weller H. Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanoporous wide-bandgap semiconductors. J Phys Chem, 1994, 98: 3183–3188

    Article  Google Scholar 

  112. 112

    Gopidas K R, Bohorquez M, Kamat P V. Photophysical and photochemical aspects of coupled semiconductors: charge-transfer processes in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I) iodide systems. J Phys Chem, 1990, 94: 6435–6440

    Article  Google Scholar 

  113. 113

    Nayak B B, Acharya H N, Mitra G B, et al. Structural characterization of Bi2–x Sb x S3 films prepared by the dip-dry method. Thin Solid Film, 1983, 105: 17–24

    Article  Google Scholar 

  114. 114

    Bessekhouad Y, Robert D, Weber J V. Bi2S3/TiO2 and CdS/TiO2 heterojunctions as an available configuration for photocatalytic degradation of organic pollutant. J Photochem Photobiol A Chem, 2004, 163: 569–580

    Article  Google Scholar 

  115. 115

    Song K Y, Park M K, Kwon Y T, et al. Preparation of transparent particulate MoO3/TiO2 and WO3/TiO2 films and their photocatalytic properties. Chem Mater, 2001, 13: 2349–2355

    Article  Google Scholar 

  116. 116

    Grandcolas M, Du K L, Louvet F B A, et al. Porogen template assisted TiO2 rutile coupled nanomaterials for improved visible and solar light photocatalytic applications. Catal Lett, 2008, 123: 65–71

    Article  Google Scholar 

  117. 117

    Wang C, Shao C, Zhang X, et al. SnO2 Nanostructures-TiO2 nanofibers heterostructures: Controlled fabrication and high photocatalytic properties. Inorg Chem, 2009, 48: 7261–7268

    Article  Google Scholar 

  118. 118

    Vinodgopal K, Bedja I, Kamat P V. Nanostructured semiconductor films for photocatalysis. Photoelectrochemical behavior of SnO2/TiO2 composite systems and its role in photocatalytic degradation of a textile azo dye. Chem Mater, 1996, 8: 2180–2187

    Article  Google Scholar 

  119. 119

    Zhang L W, Fu H B, Zhu Y F. Efficient TiO2 photocatalysts from surface hybridization of TiO2 particles with graphite-like carbon. Adv Funct Mater, 2008, 18: 2180–2189

    Article  Google Scholar 

  120. 120

    Zhang L W, Wang Y, Xu T, et al. Surface hybridization effect of C60 molecules on TiO2 and enhancement of the photocatalytic activity. J Mol Cataly A: Chem, 2010, 331: 7–14

    Article  Google Scholar 

  121. 121

    Ji S, Murakami S, Kamitakahara M, et al. Fabrication of titania/hydroxyapatite composite granules for photo-catalyst. Mater Res Bull, 2009, 44: 768–774

    Article  Google Scholar 

  122. 122

    Takeuchi M, Sakai S, Ebrahimi A, et al. Application of highly functional Ti-oxide-based photocatalysts in clean technologies. Top Cataly, 2009, 52: 1651–659

    Article  Google Scholar 

  123. 123

    Zhang X, Lei L, Zhang J, et al. A novel CdS/S-TiO2 nanotubes photocatalyst with high visible light activity. Separ Purif Tech, 2009, 66: 417–421

    Article  Google Scholar 

  124. 124

    Ferry J L, Glaze W H. Photocatalytic reduction of nitroorganics over illuminated titanium dioxide: Electron transfer between excited-state TiO2 and nitroaromatics. J Phys Chem B, 1998, 102: 2239–2244

    Article  Google Scholar 

  125. 125

    Kumar A, Jain A K. Photophysics and photochemistry of colloidal CdS-TiO2 coupled semiconductors-photocatalytic oxidation of indole. J Mol Catal A Chemical, 2001, 165: 265–273

    Article  Google Scholar 

  126. 126

    Rajeshwar K, de Tacconi N R, Chenthamarakshan C R. Semiconductor-based composite materials: Preparation, properties, and performance. Chem Mater, 2001, 13: 2765–2782

    Article  Google Scholar 

  127. 127

    Gerischer H. On the stability of semiconductor electrodes against photodecomposition. J Electroanal Chem, 1977, 82: 133–143

    Article  Google Scholar 

  128. 128

    Ocana M, Hsu W P, Matijevic E. Preparation and properties of uniform-coated colloidal particles. 6. Titania on zinc oxide. Langmuir, 1991, 7: 2911–2916

    Article  Google Scholar 

  129. 129

    Bedja I, Kamat P V. Capped semiconductor colloids. Synthesis and photoelectrochemical behavior of TiO2 capped SnO2 nanocrystallites. J Phys Chem, 1995, 99: 9182–9188

    Article  Google Scholar 

  130. 130

    Lim S H, Phonthammachai N, Pramana S S, et al. Simple route to monodispersed silica-titania core-shell photocatalysts. Langmuir, 2008, 24: 6226–6231

    Article  Google Scholar 

  131. 131

    Elder S H, Cot F M, Su Y, et al. The discovery and study of nanocrystalline TiO2-(MoO3) core-shell materials. J Am Chem Soc, 2000, 122: 5138–6146

    Article  Google Scholar 

  132. 132

    Sung Y M, Lee J K, Chae W S. Controlled crystallization of nanoporous and core/shell structure titania photocatalyst particles. Crystal Growth Desig, 2006, 6: 805–808

    Article  Google Scholar 

  133. 133

    Liz-Marzan L M, Mulvaney P. The assembly of coated nanocrystals. J Phys Chem B, 2003, 107: 7312–7326

    Article  Google Scholar 

  134. 134

    Hirakawa T, Kamat P V. Electron storage and surface plasmon modulation in Ag@TiO2 clusters. Langmuir, 2004, 20: 5645–5647

    Article  Google Scholar 

  135. 135

    Comparelli R, Fanizza E, Curri M L, et al. Photocatalytic degradation of azo dyes by organic-capped anatase TiO2 nanocrystals immobilized onto substrates. Appl Catal B, 2005, 55: 81–91

    Article  Google Scholar 

  136. 136

    Fittipaldi M, Curri M L, Comparelli R, et al. A multifrequency EPR study on organic-capped anatase TiO2 nanocrystals. J Phys Chem C, 2009, 113: 6221–6226

    Article  Google Scholar 

  137. 137

    Parkin I P, Palgrave R G. Self-cleaning coatings. J Mater Chem, 2005, 15: 1689–1695

    Article  Google Scholar 

  138. 138

    Mills A, Hodgen S, Lee S K. Self-cleaning titania films: An overview of direct, lateral and remote photo-oxidation processes. Res Chem Intermed, 2005, 31: 295–308

    Article  Google Scholar 

  139. 139

    Toma F L, Bertrand G, Klein D, et al. Development of photocatalytic active TiO2 surfaces by thermal spraying of nanopowders. J Nanomater, 2008, 1–8

  140. 140

    Sekiguchi Y, Yao Y, Ohko Y, et al. Self-sterilizing catheters with titanium dioxide photocatalyst thin films for clean intermittent catheterization: Basis and study of clinical use. Int J Urology, 2007, 14, 426-430

    Google Scholar 

  141. 141

    Mahmoodi N M, Arami M. Degradation and toxicity reduction of textile wastewater using immobilized titania nanophotocatalysis. J Photochem Photobiol B Biol, 2009, 94: 20–24

    Article  Google Scholar 

  142. 142

    Taoda H. Development of TiO2 photocatalysts suitable for practical use and their applications in environmental cleanup. Res Chem Intermed, 2008, 34: 417–426

    Article  Google Scholar 

  143. 143

    Matthews R W, Mc Evoy S R. Photocatalytic degradation of phenol in the presence of near-UV illuminated titanium dioxide. J Photochem Photobiol A Chem, 1992, 64: 231–246

    Article  Google Scholar 

  144. 144

    Bui T H, Karkmaz M, Puzenat E, et al. Solar purification and potabilization of water containing dyes. Res Chem Intermed, 2007, 33: 421–431

    Article  Google Scholar 

  145. 145

    Prairie M R, Evans L R, Martinez S L. Destruction of organics and removal of heavy metals in water via TiO2, photocatalysis in chemical oxidation: Technology for the nineties. In: Second International Symposium. Lancaster: Technomic Publishing Company, 1994

    Google Scholar 

  146. 146

    Asmussen R M, Tian M, Chen A. A new approach to wastewater remediation based on bifunctional electrodes. Environ Sci Technol, 2009, 43: 5100–5105

    Article  Google Scholar 

  147. 147

    Ali R, Hassan S H. Degradation studies on paraquat and malathion using TiO2/ZnO based photocatalyst. Malaysian J Anal Sci, 2008, 12: 77–87

    Google Scholar 

  148. 148

    Dai K, Peng T, Chen H, et al. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environ Sci Technol, 2008, 42: 1505–1510

    Article  Google Scholar 

  149. 149

    Cao Y, Yi L, Huang L, et al. Mechanism and pathways of chlorfenapyr photocatalytic degradation in aqueous suspension of TiO2. Environ Sci Technol, 2006, 40: 3373–3377

    Article  Google Scholar 

  150. 150

    Dai K, Peng T, Chen H, et al. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environ Sci Technol, 2009, 43: 1540–1545

    Article  Google Scholar 

  151. 151

    Konstantinou I K, Sakellarides T M, Sakkas V A, et al. Photocatalytic degradation of selected s-triazine herbicides and organophosphorus insecticides over aqueous TiO2 suspensions. Environ Sci Technol, 2001, 35: 398–405

    Article  Google Scholar 

  152. 152

    Parra S, Olivero J, Pulgarin C. Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO2 suspension. Appl Catal B, 2002, 36: 75–85

    Article  Google Scholar 

  153. 153

    Vulliet E, Emmelin C, Chovelon J M, et al. Photocatalytic degradation of sulfonylurea herbicides in aqueous TiO2. Appl Catal B, 2002, 38: 127–137

    Article  Google Scholar 

  154. 154

    Fujishima A, Kobayakawa K, Honda K. Hydrogen production under sunlight with an electrochemical photocell. J Electrochem Soc, 1975, 122: 1487–1489

    Article  Google Scholar 

  155. 155

    Fujihara K, Ohno T, Matsumura M. Splitting of water by electrochemical combination of two photocatalytic reactions on TiO2 particles. J Chem Soc Faraday Trans, 1998, 94: 3705–3709

    Article  Google Scholar 

  156. 156

    Kawai M, Naito S, Tamaru K, et al. The mechanism of photocatalytic hydrogen production from gaseous methanol and water: IR spectroscopic approach. Chem Phys Lett, 1983, 98: 377–380

    Article  Google Scholar 

  157. 157

    Seger B, Kamat P V. Fuel cell geared in reverse: Photocatalytic hydrogen production using a TiO2/nafion/Pt membrane assembly with no applied bias. J Phys Chem C, 2009, 113: 18946–18952

    Article  Google Scholar 

  158. 158

    Yoshida H, Hirao K, Nishimoto J, et al. Hydrogen production from methane and water on platinum loaded titanium oxide photocatalysts. J Phys Chem C, 2008, 112: 5542–5551

    Article  Google Scholar 

  159. 159

    Sayama K, Arakawa H. Significant effect of carbonate addition on stoichiometric photodecomposition of liquid water into hydrogen and oxygen from platinum-titanium(IV) oxide suspension. J Chem Soc Chem Commun, 1992, 150–152

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shipra Mital Gupta.

Additional information

This article is published with open access at Springerlink.com

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Gupta, S.M., Tripathi, M. A review of TiO2 nanoparticles. Chin. Sci. Bull. 56, 1639 (2011). https://doi.org/10.1007/s11434-011-4476-1

Download citation

Keywords

  • nanoparticles
  • photocatalyst
  • TiO2
  • dye sensitization
  • doping
  • coupling
  • capping