Abstract
Solar radiation, which varies over multiple temporal scales, modulates remarkably the evolution of the ionosphere. The solar activity dependence of the ionosphere is a key and fundamental issue in ionospheric physics, providing information essential to understanding the variations in the ionosphere and its processes. Selected recent studies on solar activity effects of the ionosphere are briefly reviewed in this report. This report focuses on (1) observations of solar irradiance at X-ray and extreme ultraviolet wavelengths and the outstanding problems of solar proxies, in the view of ionospheric studies, (2) new findings and improved representations of the features of the solar activity dependence of ionospheric key parameters and the corresponding physical processes, (3) possible phenomena in the ionosphere under extremely high and low solar activity conditions that are unique, as indicated by historical solar datasets and the deep solar minimum of solar cycle 23/24, and (4) statistical studies and model simulations of the ionosphere response to solar flares. The above-mentioned studies provide new clues for comprehensively explaining basic processes in the ionosphere and improving the prediction capability of ionospheric models and related applications.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Pap J, Bouwer S D, Tobiska W K. Periodicities of solar irradiance and solar activity indices. Solar Phys, 1990, 129: 165–189
Lundstedt H, Liszka L, Lundin R. Solar activity explored with new wavelet methods. Ann Geophys, 2005, 23: 1505–1511
Moussa X, Polygiannakis J M, Preka-Papadema P, et al. Solar cycles: A tutorial. Adv Space Res, 2005, 35: 725–738
Lean J. Solar ultraviolet irradiance variations: A review. J Geophys Res, 1987, 92: 839–868
Lean J L, White O R, Livingston W C, et al. Variability of a composite chromospheric irradiance index during the 11-year activity cycle and over longer time periods. J Geophys Res, 2001, 106: 10645–10658
Gorney D J. Solar cycle effects on the near-earth space environment. Rev Geophys, 1990, 28: 315–336
Forbes J M, Bruinsma S, Lemoine F G. Solar rotation effects in the thermospheres of Mars and Earth. Science, 2006, 312: 1366–1368
Hinteregger H E, Bedo D E, Manson J E. The EUV spectrophotometer on atmosphere explorer. Radio Sci, 1973, 8: 349–359
Ogawa H S, Judgev D L, McMullin D R, et al. First-year continuous solar EUV irradiance from SOHO by the CELIAS/SEM during 1996 solar minimum. J Geophys Res, 1998, 103: 1–6
Richards P G, Fennelly J A, Torr D G. EUVAC: A solar EUV flux model for aeronomic calculations. J Geophys Res, 1994, 99: 8981–8992
Richards P G, Woods T N, Peterson W K. HEUVAC: A new high resolution solar EUV proxy model. Adv Space Res, 2006, 37: 315–322
Floyd L, Newmark J, Cook J, et al. Solar EUV and UV spectral irradiances and solar indices. J Atmos Solar-Terr Phys, 2005, 67: 3–15
Viereck R A, Puga L, McMullin D, et al. The Mg II index: A proxy for solar EUV. Geophys Res Lett, 2001, 28: 1343–1346
Kane R P. Solar EUV and ionospheric parameters: A brief assessment. Adv Space Res, 2003, 32: 1713–1718
Tobiska W K, Woods T, Eparvier F, et al. The SOLAR2000 empirical solar irradiance model and forecast tool. J Atmos. Solar-Terr, 2000, 62: 1233–12
Bailey S M, Woods T N, Barth C A, et al. Measurements of the solar soft X-ray irradiance by the Student Nitric Oxide Explorer: First analysis and underflight calibrations. J Geophys Res, 2000, 105: 27179–27193
Lean J L, Warren H P, Mariska J T, et al. A new model of solar EUV irradiance variability 2. Comparsions with empirical models and observations and implications for space weather. J Geophys Res, 2003, 108: 1059, doi:10.1029/2001JA009238
Bilitza D. The importance of EUV indices for the international reference ionosphere. Phys Chem Earth (C), 2000, 25: 515–521
Tobiska W K. Validating the solar EUV proxy, E10.7. J Geophys Res, 2001, 106: 29969–29978
Barth C A, Tobiska W K, Rottman G J, et al. Comparison of 10.7 cm radio flux with SME solar Lyman-alpha flux. Geophys Res Lett, 1990, 17: 571–574
Kane R P. Hysteresis and non-linearity between solar EUV and 10.7 cm fluxes. Ind J Radio Space Phys, 2005, 34: 161–170
Kane R P. Fluctuations in the ∼27-day sequences in the solar index F10 during solar cycles 22–23. J Atmos Solar-Terr Phys, 2003, 65: 1169–1174
Liu L, Wan W, Ning B, et al. Solar activity variations of the ionospheric peak electron density. J Geophys Res, 2006, 111: A08304, doi:10.1029/2006JA011598
Liu R, Smith P, King J. A new solar index to improve foF2 prediction using the CCIR Atlas. Telecomm J, 1983, 50: 408–413
Ortikov M Yu, Shemelov V A, Shishigin I V, et al. Ionospheric index of solar activity based on the data of measurements of the spacecraft signals characteristics. J Atmos Solar-Terr Phys, 2003, 65: 425–430
Mikhailov A, Mikhailov V. A new ionospheric index MF2. Adv Space Res, 1995, 15: 93–97
Yue X, Wan W, Liu L, et al. An empirical model of ionospheric foE over Wuhan. Earth Planets Space, 2006, 58: 323–330
Nusinov A A. Ionosphere as a natural detector for investigations of solar EUV flux variations. Adv Space Res, 2006, 37: 426–432
Afraimovich E L, Astafyeva E I, Oinats A V, et al. Global electron content: A new conception to track solar activity. Ann Geophys, 2008, 26: 335–344
Liu L, Wan W, Ning B, et al. Climatology of the mean TEC derived from GPS global ionospheric maps. J Geophys Res, 2009, 114: A06308, doi:10.1029/2009JA014244
She C, Wan W, Xu G. Climatological analysis and modeling of the ionospheric global electron content. Chinese Sci Bull, 2008, 53: 282–288
Liu R, Xu Z, Wu J, et al. Preliminary studies on ionospheric forecasting in China and its surrounding area. J Atmos Solar-Terr Phys, 2005, 67: 1129–1136
Wang J L. Will the solar cycle 24 be a low one? Chinese Sci Bull, 2009, 54: 3664–3668
Dikpati M, de Toma G, Gilman P A. Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophys Res Lett, 2005, 33: L05102, doi:10.1029/2005GL025221
Liu J Y, Chen Y I, Lin J S. Statistical investigation of the saturation effect in the ionospheric foF2 versus sunspot, solar radio noise, and solar EUV radiation. J Geophys Res, 2003, 108: 1067, doi:10.1029/2001JA007543
Liu L, Wan W, Ning B. Statistical modeling of ionospheric foF2 over Wuhan. Radio Sci, 2004, 39: RS2013, doi:10.1029/2003RS003005
Chen Y, Liu L, Le H. Solar activity variations of nighttime ionospheric peak electron density. J Geophys Res, 2008, 113: A11306, doi:10.1029/2008JA013114
Chen Y I, Liu J Y, Chen S C. Statistical investigation of the saturation effect of sunspot on the ionospheric foF2. Phys Chem Earth (C), 2000, 25: 359–362
Kane R P. Sunspots, solar radio noise, solar EUV and ionospheric foF2. J Atmos Terr Phys, 1992, 54: 463–466
Lei J, Liu L, Wan W, Zhang S R. Variations of electron density based on long-term incoherent scatter radar and ionosonde measurements over Millstone Hill. Radio Sci, 2005, 40: RS2008, doi:10.1029/2004RS003106
Mikhailov A V, Mikhailov V V. Solar cycle variations of annual mean noon foF2. Adv Space Res, 1995, 15: 79–82
Xu T, Wu Z S, Wu J, et al. Solar cycle variation of the monthly median foF2 at Chongqing station, China. Adv Space Res, 2008, 42: 213–218
Richards P G. Seasonal and solar cycle variations of the ionospheric peak electron density: Comparison of measurement and models. J Geophys Res, 2001, 106: 12803–12819
Sethi N K, Goel M K, Mahajan K K. Solar cycle variations of foF2 from IGY to 1990. Ann Geophys, 2002, 20: 1677–16
Bhonsle R V, Da Rosa A V, Garriott O K. Measurements of the total electron content and equivalent slab thickness of the mid-latitude ionosphere. Radio Sci, 1965, 69: 929–939
Chakraborty S K, Hajra R. Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indian zone. Ann Geophys, 2008, 26: 47–57
Huang Y N. Solar cycle variation in the total electron content at Sagamore Hill. J Atoms Terr Phys, 1978, 40: 733–739
Liu L, Chen Y. Statistical analysis on the solar activity variations of the TEC derived at JPL from global GPS observations. J Geophys Res, 2009, 114: A10311, doi:10.1029/2009JA014533
Titheridge J E. The electron content of the southern mid-latitude ionosphere, 1965–1971. J Atmos Terr Phys, 1973, 35: 981–1001
Yeh K C, Flaherty B J. Ionospheric electron content at temperate latitudes during the declining phase of the sunspot cycle. J Geophys Res, 1966, 71: 4557–4570
Liu L, Le H, Wan W, et al. An analysis of the scale heights in the lower topside ionosphere based on the Arecibo incoherent scatter radar measurements. J Geophys Res, 2007, 112: A06307, doi:10.1029/2007JA012250
Liu L, Luan X, Wan W, et al. Solar activity variations of equivalent winds derived from global ionosonde data. J Geophys Res, 2004, 109: A12305, doi:10.1029/2004JA010574
Liu L, Wan W, Luan X, et al. Solar activity dependence of effective winds derived from ionospheric data at Wuhan. Adv Space Res, 2003, 32: 1719–1924
Igi S, Oliver W L, Ogawa T. Solar cycle variations of the thermospheric meridional wind over Japan derived from measurements of hmF2. J Geophys Res, 1999, 104: 22427–22431
Hedin A E, Buonsanto M J, Codrescu M, et al. Solar activity variations in mid-latitude thermospheric meridional winds. J Gephys Res, 1994, 99: 17601–17608
Guo J, Wan W, Forbes J M, et al Effects of solar variability on thermosphere density from CHAMP accelerometer data. J Geophys Res, 2007, 112: A10308, doi:10.1029/2007JA012409
Liu H, Lühr H, Watanabe S. Climatology of the equatorial thermospheric mass density anomaly. J Geophys Res, 2007, 112: A05305, doi: 10.1029/2006JA012199
Balan N, Bailey G J, Jenkins B, et al. Variations of ionospheric ionization and related solar fluxes during an intense solar cycle. J Geophys Res, 1994, 99: 2243–2253
Balan N, Bailey G J, Su Y Z. Variations of the ionosphere and related solar fluxes during solar cycles 21 and 22. Adv Space Res, 1996, 18: 11–14
Balan N, Bailey G J, Moffett R J. Modeling studies of ionospheric variations during an intense solar cycle. J Geophys Res, 1994, 99: 17467–17475
Ma R, Xu J, Wang W, et al. Seasonal and latitudinal differences of the saturation effect between ionospheric NmF2 and solar activity indices. J Geophys Res, 2009, 114: A10303, doi:10.1029/2009JA014353
Ortiz de Adler N, Manzano J R. Solar cycle hysteresis on F-region electron concentration peak heights over Tucuman. Adv Space Res, 1995, 15: 83–88
Trísková L, Chum J. Hysteresis in dependence of foF2 on solar indices. Adv Space Res, 1996, 18: 145–148
Kouris S S, Bradley P A, Dominici P. Solar-cycle variation of the daily foF2 and M(3000)F2. Ann Geophys, 1998, 16: 1039–1042
Hedin A E. Correlations between thermospheric density and temperature, solar EUV flux, and 10.7-cm flux variations. J Geophys Res, 1984, 89: 9828–9834
Liu H, Stolle C, Förster M, et al. Solar activity dependence of the electron density in the equatorial anomaly regions observed by CHAMP. J Geophys Res, 2007, 112: A11311, doi:10.1029/2007J-A012616
Chen Y, Liu L, Wan W, et al. Solar activity dependence of the topside ionosphere in low latitudes. J Geophys Res, 2009, 114: A08306, doi:10.1029/2008JA013957
Liu L, Wan W, Ning B. A study of the ionogram derived effective scale height around the ionospheric hmF2. Ann Geophys, 2006, 24: 851–860
Fejer B G, Farley D T, Woodman R F, et al. Dependence of equatorial F-region vertical drifts on season and solar cycle. J Geophys Res, 1979, 84: 5792–5796
González S A, Sulzer M P, Nicolls M J, et al. Solar cycle variability of nighttime topside helium ion concentrations over Arecibo. J Geophys Res, 2004, 109: A07302, doi:10.1029/2003JA010100
Truhlík V, Třísková L, Šmilauer J. Manifestation of solar activity in the global topside ion composition-A study based on satellite data. Ann Geophys, 2005, 23: 2511–2517
West K H, Heelis R A, Rich F J. Solar activity variations in the composition of the low-latitude topside ionosphere. J Geophys Res, 1997, 102: 295–305
Kutiev I S, Marinov P G, Watanabe S. Model of topside ionosphere scale height based on topside sounder data. Adv Space Res, 2006, 37: 943–950
Zhao B, Wan W, Liu L, et al. Statistical characteristics of the total ion density in the topside ionosphere during the period 1996–2004 using empirical orthogonal function (EOF) analysis. Ann Geophys, 2005, 23: 3615–3631
Liu L, Wan W, Yue X, et al. The dependence of plasma density in the topside ionosphere on solar activity level. Ann Geophys, 2007, 25: 1337–1343
Liu L, Zhao B, Wan W, et al. Yearly variations of global plasma densities in the topside ionosphere at middle and low latitudes. J Geophys Res, 2007, 112: A07303, doi:10.1029/2007JA012283
Su Y Z, Bailey G J, Fukao S. Altitude dependencies in the solar activity variations of the ionospheric electron density. J Geophys Res, 1999, 104: 14879–14891
Rich F J, Sultan P J, Burke W J. The 27-day variations of plasma densities and temperatures in the topside ionosphere. J Geophys Res, 2003, 108: 1297, doi:10.1029/2002JA009731
Eddy J A. The Maunder minimum. Science, 1976, 192: 1189–1202
Smithtro C G, Sojka J J. Behavior of the ionosphere and thermosphere subject to extreme solar cycle conditions. J Geophys Res, 2005, 110: A08306, doi:10.1029/2004JA010782
Dmitriev A V, Yeh H C, Chao J K, et al. Top-side ionosphere response to extreme solar events. Ann Geophys, 2006, 24: 1469–1477
Tsurutani B T, Gonzalez W D, Lakhina G S, et al. The extreme magnetic storm of 1–2 September 1859. J Geophys Res, 2003, 108: 1268, doi:10.1029/2002JA0095
Tsurutani B T, Zambon G A, Guarnieri F L, et al. The October 28, 2003 extreme EUV solar flare and resultant extreme ionospheric effects: Comparison to other Halloween events and the Bastille Day event. Geophys Res Lett, 2005, 32: L03S09, doi:10.1029/2004GL-021475
Davies K. Ionospheric Radio. Exeter: Short Run Press Ltd., 1990
Mendillo M. Behavior of the ionospheric F region during the greatest solar flare of August 7, 1972. J Geophys Res, 1974, 79: 665–677
Wan W, Liu L, Yuan H, et al. The GPS measured SITEC caused by the very intense solar flare on July 14, 2000. Adv Space Res, 2005, 36: 2465–2469
Afraimovich E L. GPS global detection of the ionospheric response to solar flares. Radio Sci, 2000, 35: 1417–424
Liu H, Lühr H, Watanabe S, et al. Contrasting behavior of the thermosphere and ionosphere in response to the 28 October 2003 solar flare. J Geophys Res, 2007, 112: A07305, doi:10.1029/2007JA012313
Chen B, Liu L, Wan W, et al. A statistical analysis of SITEC caused by intense solar flares during 1996–2003 (in Chinese). Chin J Space Sci, 2005, 25: 6–16
Liu J Y, Lin C H, Tsai H F, et al. Ionospheric solar flare effects monitored by the ground-based GPS receivers: Theory and observation. J Geophys Res, 2004, 109: A01307, doi:10.1029/2003J-A009931
Zhang D H, Xiao Z. Study of the ionospheric TEC using GPS during the large solar flare burst on Nov. 6, 1997. Chinese Sci Bull, 2000, 45: 1749–1752
Zhang D H, Xiao Z, Chang Q. The correlation of flare’s location on solar disc and the sudden increase of total electron content. Chinese Sci Bull, 2002, 47: 82–85
Zhang D H, Xiao Z. The calculating TEC methods by using GPS observations and their applications for ionospheric disturbances. Chinese Sci Bull, 2000, 43: 451–458
Zhang D H, Xiao Z, Igarashi K, et al. GPS-derived ionospheric total electron content response to a solar flare that occurred on 14 July 2000. Radio Sci, 2002, 37: 1086, doi:10.1029/2001RS002542
Zhang D H, Xiao Z. Study of the ionospheric total electron content response to the great flare on 15 April 2001 using the International GPS Service network for the whole sunlit hemisphere. J Geophys Res, 2003, 108: 1330, doi:10.1029/2002JA009822
Zhang D H, Xiao Z. Study of ionospheric response to the 4B flare on 28 October 2003 using international GPS service network data. J Geophys Res, 2005, 110: A03307, doi:10.1029/2004JA010738
Le H, Liu L, Chen B, et al. Modeling the responses of the middle latitude ionosphere to solar flares. J Atmos Solar-Terr Phys, 2007, 69: 1587–1598
Huba J D, Warren H P, Joyce G, et al. Global response of the low-latitude to midlatitude ionosphere due to the Bastille Day flare. Geophys Res Lett, 2005, 32: L15103, doi:10.1029/2005GL023291
Meier R R, Warren H P, Nicholas A C, et al. Ionospheric and dayglow responses to the radiative phase of the Bastille Day flare. Geophys Res Lett, 2002, 29: 1461, doi:10.1029/2001GL013956
Sutton E K, Forbes J M, Nerem R S, et al. Neutral density response to the solar flares of October and November, 2003. Geophys Res Lett, 2006, 33: L22101, doi:10.1029/2006GL027737
Jackman C H, DeLand M T, Labow G J, et al. Influence of several very large solar proton events in years 2000–2003 on the neutral middle atmosphere. Adv Space Res, 2005, 35: 445–450
Shea M A, Smart D F. A summary of major solar proton events. Solar Physics, 1990, 127: 297–320
Osepian A, Kirkwood S, Dalin P. The influence of ozone concentration on the lower ionosphere — Modelling and measurements during the 29–30 October 2003 solar proton event. Ann Geophys, 2009, 27: 577–589
de Adler N O, Elías A G, Manzano J R. Solar cycle length variation: Its relation with ionospheric parameters. J Atmos Solar-Terr Phys, 1997, 59: 159–162
Author information
Authors and Affiliations
Corresponding author
Additional information
This article is published with open access at Springerlink.com
Rights and permissions
This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.
About this article
Cite this article
Liu, L., Wan, W., Chen, Y. et al. Solar activity effects of the ionosphere: A brief review. Chin. Sci. Bull. 56, 1202–1211 (2011). https://doi.org/10.1007/s11434-010-4226-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11434-010-4226-9