Skip to main content

Effects of Solar Activity on the Upper Atmosphere

  • Chapter
  • First Online:
Solar-Terrestrial Environmental Prediction

Abstract

The energetics and dynamics of the upper atmosphere (mesosphere, thermosphere, and ionosphere) are strongly dependent on solar activity. The energy flow from the sun to the upper atmosphere—UV/EUV radiation and solar wind—is significantly changed during various solar activity periods. This causes changes in the energy budget, dynamical features, and various phenomena in the upper atmosphere. For example, changes in joule heating (solar wind energy dissipation) of the polar thermosphere occasionally cause increases in the thermospheric temperature of more than 1000 K and wind speed of several 100 m/s. In this chapter, we describe our current understandings of the variations in the upper atmosphere depending on solar activity. First, we mention mainly the thermospheric structure and variations, and then, impacts of variation in the solar activity on the mesosphere and lower thermosphere are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bilitza, D., Reinisch, B.W.: International reference ionosphere 2007: improvements and new parameters. Adv. Space Res. 42(4), 599–609 (2008). https://doi.org/10.1016/j.asr.2007.07.048

    Article  ADS  Google Scholar 

  • Bruinsma, S.L., Forbes, J.M.: Global observation of traveling atmospheric disturbances (TADs) in the thermosphere. Geophys. Res. Lett. (2007). https://doi.org/10.1029/2007GL030243

  • Forbes, J.M.: Dynamics of the thermosphere. J. Meteorol. Soc. Jpn. 85B, 193–213 (2007)

    Article  Google Scholar 

  • Fujiwara, H., Miyoshi, Y.: Characteristics of the large-scale traveling atmospheric disturbances during geomagnetically quiet and disturbed periods simulated by a whole atmosphere general circulation model. Geophys. Res. Lett. 33, L20108 (2006). https://doi.org/10.1029/2006GL027103

    Article  ADS  Google Scholar 

  • Fuller-Rowell, T.J.: The Dynamics of the Lower Thermosphere. In: Johnson, R.M., Killeen, T.L. (eds.) The Upper Mesosphere and Lower Thermosphere: A Review of Experiment and Theory, Geophys. Monogr. Ser., vol. 87, pp. 23–36. AGU, Washington, DC (1995)

    Google Scholar 

  • Hirota, I.: Observational evidence of the semiannual oscillation in the tropical middle atmosphere-a review. Pure Appl. Geophys. 118, 217–238 (1980)

    Article  ADS  Google Scholar 

  • Jin, H.Y., Miyoshi, Y., Fujiwara, H., Shinagawa, H., Terada, K., Terada, N., Ishii, M., Otsuka, Y., Saito, A.: Vertical connection from the tropospheric activities to the ionospheric longitudinal structure simulated by a new Earth’s whole atmosphere-ionosphere coupled model. J. Geophys. Res. 116, A01316 (2011). https://doi.org/10.1029/2010JA015925

    Article  ADS  Google Scholar 

  • Lean, J.: Variations in the sun’s radiative output. Rev. Geophys. (1991). https://doi.org/10.1029/91RG01895

  • Lean, J., Woods, T.N., Eparvier, F.G., Meier, R.R., Strickland, D.J., Correira, J.T., Evans, J.S.: Solar extreme ultraviolet irradiance: present, past, and future. J. Geophys. Res. (2011). https://doi.org/10.1029/2010JA015901

  • Lei, J., Thayer, J.P., Lu, G., Burns, A.G., Wang, W., Sutton, E.K., Emery, B.A.: Rapid recovery of thermosphere density during the October 2003 geomagnetic storms. J. Geophys. Res. (2011). https://doi.org/10.1029/2010JA016164

  • Lieberman, R.S.: Intraseasonal variability of high-resolution doppler imager winds in the equatorial mesosphere and lower thermosphere. J. Geophys. Res. 103(D10), 11221–11228 (1998)

    Article  ADS  Google Scholar 

  • Liu, H., Lühr, H., Köhler, W.: Global distribution of the total mass density derived from CHAMP. J. Geophys. Res. 110, A04301 (2005). https://doi.org/10.1029/2004JA010741

    Article  ADS  Google Scholar 

  • Marsh, D.R., Solomon, S.C., Reynolds, A.E.: Empirical model of nitric oxide in the lower thermosphere. J. Geophys. Res. 109, A07301 (2004). https://doi.org/10.1029/2003JA010199

    Article  ADS  Google Scholar 

  • Miyoshi, Y., Fujiwara, H.: Day-to-day variations of migrating diurnal tide simulated by a GCM from the ground surface to the exobase. Geophys. Res. Lett. 30(15), 1789 (2003). https://doi.org/10.1029/2003GL017695

    Article  ADS  Google Scholar 

  • Miyoshi, Y., Fujiwara, H., Jin, H., Shinagawa, H.: Impacts of sudden stratospheric warming on the general circulation of the thermosphere. J. Geophys. Res. Space Physics. 120, 10897–10912 (2015). https://doi.org/10.1002/2015JA021894

    Article  ADS  Google Scholar 

  • Mlynczak, M.G., et al.: Observations of infrared radiative cooling in the thermosphere on daily to multiyear timescales from the TIMED/SABER instrument. J. Geophys. Res. 115, A03309 (2010). https://doi.org/10.1029/2009JA014713

    Article  ADS  Google Scholar 

  • Picone, J.M., Hedin, A.E., Drob, D.P., Aikin, A.C.: NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res. 107(A12), SIA–S15 (2002). https://doi.org/10.1029/2002JA009430

    Article  Google Scholar 

  • Prölss, G.W., Ionospheric F-region storms, In: Handbook of Atmospheric Electrodynamics, 195–248, Volume II, CRC Press Boca Raton, FL (1995)

    Google Scholar 

  • Roble, R.G.: In: Akasofu, S.-I., Kamide, Y. (eds.) The Earth’s Thermosphere, The Solar Wind and the Earth, pp. 245–264. Terra Scientific Publishing Company (TERRAPUB), Tokyo (1987)

    Google Scholar 

  • Roble, R.G., Ridley, E.C., Dickinson, R.E.: On the global mean structure of the thermosphere. J. Geophys. Res. 92 (1987). https://doi.org/10.1029/JA092iA08p08745

  • Sato, K., Yasui, R., Miyoshi, Y.: The momentum budget in the stratosphere, mesosphere, and lower thermosphere. Part I: contributions of different wave types and in situ generation of Rossby waves. J. Atmos. Sci. 75, 3613–3633 (2018). https://doi.org/10.1175/JAS-D-17-0336.1

    Article  ADS  Google Scholar 

  • Tagawa, M., Tomita, M., Umeno, M., Ohmae, N.: Atomic oxygen generators for surface studies in low earth orbit. AIAA J. 32, 95–100 (1994)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Fujiwara .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fujiwara, H., Miyoshi, Y., Jin, H. (2023). Effects of Solar Activity on the Upper Atmosphere. In: Kusano, K. (eds) Solar-Terrestrial Environmental Prediction. Springer, Singapore. https://doi.org/10.1007/978-981-19-7765-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-7765-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-7764-0

  • Online ISBN: 978-981-19-7765-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics