Skip to main content
Log in

Plasmon hybridization for real metals

  • Article
  • Special Topic Plasmonics
  • Published:
Chinese Science Bulletin

Abstract

We present three important extensions of the plasmon hybridization (PH) method: a generalization of the method to include realistic non-Drude dielectric permittivities for metals, the development of an algorithm for the calculation of plasmon-induced electric field enhancements, and the extension of the PH method to the modeling of plasmonic Fano resonances. We illustrate these developments with an application to a silver nanosphere dimer and a symmetric silver nanosphere heptamer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Petschulat J, Cialla D, Janunts N, et al. Doubly resonant optical nanoantenna arrays for polarization resolved measurement of surface-enhanced Raman scattering. Opt Express, 2010, 18: 4184–4197

    Article  Google Scholar 

  2. Chen C, Hutchison J A, Dorpe P V, et al. Focusing plasmons in nanoslits for surface-enhanced Raman scattering. Small, 2009, 5: 2876–2882

    Article  Google Scholar 

  3. Liang H Y, Li Z P, Wang W Z, et al. Highly surface-roughened flower-like silver nanoparticles for extremely sensitive substrates of surface-enhanced Raman scattering. Adv Mater, 2009, 21: 4614–4618

    Article  Google Scholar 

  4. Mu C, Zhang J P, Xu D S. Au nanoparticle arrays with tunable particle gaps by template-assisted electroless deposition for high performance surface-enhanced Raman scattering. Nanotechnology, 2009, 21: 015604

    Article  Google Scholar 

  5. Ochsenkuhn M A, Jess P R T, Stoquert H, et al. Nanoshells for surface-enhanced Raman spectroscopy in eukaryotic cells: Cellular response and sensor development. ACS Nano, 2009, 3: 3613–3621

    Article  Google Scholar 

  6. Wang W, Li Z P, Gu B, et al. Ag@SiO2 core-shell nanoparticles for probing spatial distribution of electromagnetic field enhancement via surface-enhanced Raman scattering. ACS Nano, 2009, 3: 3493–3496

    Article  Google Scholar 

  7. Camargo P H C, Cobley C M, Rycenga M, et al. Measuring the surface-enhanced Raman scattering enhancement factor of hot spots formed between an individual Ag nanowire and a single Ag nanocube. Nanotechnology, 2009, 20: 434020

    Article  Google Scholar 

  8. Kang T, Yoon I, Jeon K S, et al. Creating well-defined hot spots for surface-enhanced Raman scattering by single-crystalline noble metal nanowire pairs. J Phys Chem C, 2009, 113: 7492–7496

    Article  Google Scholar 

  9. Zhai Y M, Zhai J F, Wang Y, et al. Fabrication of iron oxide core/gold shell submicrometer spheres with nanoscale surface roughness for efficient surface-enhanced Raman scattering. J Phys Chem C, 2009, 113: 7009–7014

    Article  Google Scholar 

  10. Yang L, Wang H, Yan B, et al. Calibration of silver plasmon rulers in the 1–25 nm separation range: Experimental indications of distinct plasmon coupling regimes. J Phys Chem C, 2010, 114: 4901–4908

    Article  Google Scholar 

  11. Encina E R, Coronado E A. Plasmon coupling in silver nanosphere pairs. J Phys Chem C, 2010, 114: 3918–3923

    Article  Google Scholar 

  12. Ye J, Dorpe P V, Lagae L, et al. Observation of plasmonic dipolar anti bonding mode in silver nanoring structures. Nanotechnology, 2009, 20: 465203

    Article  Google Scholar 

  13. Tzekezis C, Papanikolau N, Almpanis E, et al. Tailoring plasmons with metallic nanorod arrays. Phys Rev B, 2009, 80: 125124

    Article  Google Scholar 

  14. Zhu J. Composition-dependent plasmon shift in Au-Ag alloy nanotubes: Effect of local field distribution. J Phys Chem C, 2009, 113: 3164–3167

    Article  Google Scholar 

  15. Netzer N L, Gunawidjaja R, Hiemstra M, et al. Formation and optical properties of compression-induced nanoscale buckles on silver nanowires. ACS Nano, 2009, 3: 1795–1802

    Article  Google Scholar 

  16. Li H J, Fu S L, Xie S X, et al. Induced electric fields and plasmonic interactions between a metallic nanotube and a thin metallic film. Science China: Phys Mech Astron, 2010, 53: 38–43

    Article  Google Scholar 

  17. Li Z, Gong Q H. The plasmonic coupling of metal nanoparticles and its implication for scanning near-field optical microscope characterization. Chinese Sci Bull, 2009, 54: 3843

    Article  Google Scholar 

  18. Pernice W H P. Finite-difference time-domain methods and materials models for the simulation of metallic and plasmonic structures. J Comp Theor Nanosci, 2010, 7: 1–14

    Article  Google Scholar 

  19. Chremmos I. Magnetic field integral equation analysis of interaction between a surface plasmon polariton and a circular dielectric cavity embedded in the metal. J Opt Soc Am A, 2009, 26: 2623–2633

    Article  Google Scholar 

  20. Khoury C G, Norton S J, Dihn T V. Plasmonics of 3D nanoshell dimers using multipole expansion and finite element method. ACS Nano, 2009, 3: 2776–2788

    Article  Google Scholar 

  21. Teperik T V, Borisov A G. Optical resonances in the scattering of light from a nanostructured metal surface: A three-dimensional study. Phys Rev B, 2009, 79: 245409

    Article  Google Scholar 

  22. Chau Y F, Chen M W, Tsai D P. Three-dimensional analysis of surface plasmon resonance modes on a gold nanorod. Appl Optics, 2009, 48: 617–622

    Article  Google Scholar 

  23. Montgomery J M, Lee T W, Gray S K. Theory and modeling of light interactions with metallic nanostructures. J Phys: Condens Matter, 2008, 20: 323201

    Article  Google Scholar 

  24. Mohammadi A, Jalali T, Agio M. Dispersive contour-path algorithm for the two-dimenional finite-difference time-domain method. Opt Express, 2008, 16: 7397–7406

    Article  Google Scholar 

  25. Prodan E, Radloff C, Halas N J, et al. A hybridization model for the plasmon response of complex nanoparticles. Science, 2003, 302: 419–422

    Article  Google Scholar 

  26. Liu H, Liu Y M, Li T, et al., Coupled magnetic plasmons in metamaterials. Phys Status Solidi B, 2009, 246: 1397–1406

    Article  Google Scholar 

  27. Liu N, Liu H, Giessen H. Stereometamaterials. Nat Photonics, 2009, 3: 157–162

    Article  Google Scholar 

  28. Kim S J, Jang D J. Hybridized surface-plasmon resonances of platinum colloid-adsorbed gold nanospheres. Mater Lett, 2008, 62: 4500–4502

    Article  Google Scholar 

  29. Moradi A. Plasmon hybridization in metallic nanotubes with a nonconcentric core. Opt Commun, 2009, 282: 3368–3370

    Article  Google Scholar 

  30. Yuan Z, Gao S W. Linear response study of plasmon excitation in metallic thin films: Layer dependent hybridization and dispersion. Phys Rev B, 2006, 73: 155411

    Article  Google Scholar 

  31. Yang Z J, Zhang Z S, Zhang W, et al. Twinned Fano resonances induced by hybridized plasmons in Au-Ag nanorod heterodimers. Appl Phys Lett, 2010, 96: 131113

    Article  Google Scholar 

  32. Yang S C, Kobori H, He C L, et al. Plasmon hybridization in individual gold nanocrystal dimers: Direct observation of bright and dark modes. Nano Lett, 2010, 10: 632–637

    Article  Google Scholar 

  33. Funston A M, Novo C, Davis T J, et al. Plasmon coupling of gold nanorods at short distances and in different geometries. Nano Lett, 2009, 9: 1651–1658

    Article  Google Scholar 

  34. Hu Y, Noelck S J, Drezek R A. Symmetry breaking on gold-silica-gold multilayer nanoshells. ACS Nano, 2010, 4: 1521–1528

    Article  Google Scholar 

  35. Wu D J, Liu X J. Tunable near-infrared optical properties of three-layered gold-silica-gold nanoparticles. Appl Phys B, 2009, 97: 193–197

    Article  Google Scholar 

  36. Ye J, Lagae L, Maes G, et al. Symmetry breaking induced optical properties of gold open shell nanostructures. Opt Express, 2009, 17: 23765–23771

    Article  Google Scholar 

  37. Tabor C, Haute D V, El-Sayed M A. Effect of orientation on plasmonic coupling between gold nanorods. ACS Nano, 2009, 3: 3670–3678

    Article  Google Scholar 

  38. Prodan E, Nordlander P. Plasmon hybridization in spherical nanoparticles. J Chem Phys, 2004, 120: 5444–5454

    Article  Google Scholar 

  39. Wu Y P, Nordlander P. Plasmon hybridization in nanoshells with a nonconcentric core. J. Chem. Phys, 2006, 125: 124708

    Article  Google Scholar 

  40. Brandl D W, Nordlander P. Plasmon modes of curvilinear metallic core/shell particles. J Chem Phys, 2007, 126: 144708

    Article  Google Scholar 

  41. Wang H, Brandl D W, Le F, et al. Nanorice: A hybrid plasmonic nanostructure. Nano Lett, 2006, 6: 827–832

    Article  Google Scholar 

  42. Dutta C M, Ali T A, Brandl D W, et al. Plasmonic properties of a metallic torus. J Chem Phys, 2008, 129: 084706

    Article  Google Scholar 

  43. Nordlander P, Oubre C, Prodan E, et al. Plasmon hybridization in nanoparticle dimers. Nano Lett, 2004, 4: 899–903

    Article  Google Scholar 

  44. Brandl D W, Oubre C, Nordlander P. Plasmon hybridization in nanoshell dimers. J Chem Phys, 2005, 123: 024701

    Article  Google Scholar 

  45. Willingham B, Brandl D W, Nordlander P. Plasmon hybridization in nanorod dimers. Appl Phys B, 2008, 93: 209–216

    Article  Google Scholar 

  46. Brandl D W, Mirin N A, Nordlander P. Plasmon modes of nanosphere trimers and quadrumers. J Phys Chem B, 2006, 110: 12302–12310

    Article  Google Scholar 

  47. Urzhumov Y A, Shvets G, Fan J, et al. Plasmonic nanoclusters: A path towards negative-index metafluids. Opt Express, 2007, 15: 14129–14145

    Article  Google Scholar 

  48. Mirin N A, Bao K, Nordlander P. Fano resonances in plasmonic nanoparticle aggregates. J Phys Chem A, 2009, 113: 4028–4034

    Article  Google Scholar 

  49. Hao F, Nordlander P. Plasmonic coupling between a metallic nanosphere and a thin metallic wire. Appl Phys Lett, 2006, 89: 103101

    Article  Google Scholar 

  50. Nordlander P, Prodan E. Plasmon hybridization in nanoparticles near metallic surfaces. Nano Lett, 2004, 4: 2209–2213

    Article  Google Scholar 

  51. Le F, Lwin N Z, Steele J M, et al. Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. Nano Lett, 2005, 5: 2009–2013

    Article  Google Scholar 

  52. Le F, Zwin N Z, Halas N J, et al. Plasmonic interaction between a metallic nanoshell and a thin metallic film. Phys Rev B, 2007, 76: 165410

    Article  Google Scholar 

  53. Park T H, Mirin N, Lassiter J B, et al. Optical properties of a nanosized hole in a thin metallic film. ACS Nano, 2008, 2: 25–32

    Article  Google Scholar 

  54. Johnson P B, Christy R W. Optical constants of the noble metals. Phys Rev B, 1972, 6: 4370–4379

    Article  Google Scholar 

  55. Fan J A, Wu C H, Bao K, et al. Self-assembled plasmonic nanoparticle clusters. Science, 2010, 328: 1135–1138

    Article  Google Scholar 

  56. Mukherjee S, Sobhani H, Lassiter J B, et al. Fanoshells: Nanoparticles with built-in Fano resonances. Nano Lett, 2010, doi: 10.1021/nl1016392

  57. Liu N A, Weiss T, Mesch M, et al. Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett, 2010, 10: 1103–1107

    Article  Google Scholar 

  58. Alzar C L G, Martinez M A G, Nussenzveig P. Classical analog of electromagnetically induced transparency. Am J Phys, 2002, 70: 37–41

    Article  Google Scholar 

  59. Le F, Brandl D W, Urzhumov Y A, et al. Metallic nanoparticle arrays: A common substrate for both SERS and SEIRA. ACS Nano, 2008, 2: 707–718

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Nordlander.

About this article

Cite this article

Bao, K., Sobhani, H. & Nordlander, P. Plasmon hybridization for real metals. Chin. Sci. Bull. 55, 2629–2634 (2010). https://doi.org/10.1007/s11434-010-4070-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4070-y

Keywords

Navigation