Skip to main content
Log in

Molecular imaging of tumor angiogenesis using RGD-labeled iron oxide nanoparticles

  • Article
  • Oncology
  • Published:
Chinese Science Bulletin

Abstract

Integrin is often significantly upregulated in activated endothelial cells during tumor angiogenesis. The arginine-glycine-aspartic acid (RGD) peptide sequence is a specific recognition motif to αvβ3 integrin. In this study, a RGD labeled, Poly lactic acid (PLA) coated ultrasmall paramagnetic iron oxide (USPIO) (referred to as RGD-PLA-USPIO) were developed and the ability to detect tumor angiogenesis was investigated in vitro and in vivo. Increased uptake of RGD-PLA-USPIO by human umbilical vein endothelial cells (HUVECs) was detected by Prussian blue stain and transmission electronic microscopy (TEM). Pronounced signal decrease in T2*-weighted magnetic resonance image (MRI) and heterogeneous arrangement of neovasculature of tumor tissue were clearly identified in Vx-2 tumor model. The MR signal of contralateral muscle only could be seen a slight background change after either RGD-PLA-USPIO or PLA-USPIO injection. These studies demonstrate the efficiency of RGD-PLA-USPIO to visualize αvβ3 integrin in activated tumor endothelial cells and its potential for detecting and monitoring tumor vasculature change after therapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fujita Y, Abe R, Shimizu H. Clinical approaches toward tumor angiogenesis: Past, present and future. Curr Pharm Des, 2008, 14: 3820–3834

    Article  Google Scholar 

  2. Gupta M K, Qin R Y. Mechanism and its regulation of tumor-induced angiogenesis. World J Gastroenterol, 2003, 9: 1144–1155

    Google Scholar 

  3. Kobayashi H, Lin P C. Nanotechnology for antiangiogenic cancer therapy. Nanomed, 2006, 1: 17–22

    Article  Google Scholar 

  4. Garmy-Susini B, Varner J A. Roles of integrins in tumor angiogenesis and lymphangiogenesis. Lymphat Res Biol, 2008, 6: 155–163

    Article  Google Scholar 

  5. Serini G, Valdembri D, Bussolino F. Integrins and angiogenesis: A sticky business. Exp Cell Res, 2006, 312: 651–658

    Article  Google Scholar 

  6. Yoshimoto M, Ogawa K, Washiyama K, et al. alpha(v)beta(3) Integrin-targeting radionuclide therapy and imaging with monomeric RGD peptide. Int J Cancer, 2008, 123: 709–715

    Article  Google Scholar 

  7. Strieth S, Eichhorn M E, Sutter A, et al. Antiangiogenic combination tumor therapy blocking alpha(v)-integrins and VEGF-receptor-2 increases therapeutic effects in vivo. Int J Cancer, 2006, 119: 423–431

    Article  Google Scholar 

  8. Suh D Y. Understanding angiogenesis and its clinical applications. Ann Clin Lab Sci, 2000, 30: 227–238

    Google Scholar 

  9. Schottelius M, Laufer B, Kessler H, et al. Ligands for mapping alphavbeta3-integrin expression in vivo. Acc Chem Res, 2009, 42: 969–980

    Article  Google Scholar 

  10. Xiao Y, Truskey G A. Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J, 1996, 71: 2869–2884

    Article  Google Scholar 

  11. Wang W, Wu Q, Pasuelo M, et al. Probing for integrin alphav beta3 binding of RGD peptides using fluorescence polarization. Bioconjug Chem, 2005, 16: 729–734

    Article  Google Scholar 

  12. Liu S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor imaging. Mol Pharm, 2006, 3: 472–487

    Article  Google Scholar 

  13. Jaffer F A, Libby P, Weissleder R. Optical and multimodality molecular imaging: Insights into atherosclerosis. Arterioscler Thromb Vasc Biol, 2009, 29: 1017–1024

    Article  Google Scholar 

  14. Weissleder R, Pittet M J. Imaging in the era of molecular oncology. Nature, 2008, 452: 580–589

    Article  Google Scholar 

  15. Sosnovik D E, Weissleder R. Emerging concepts in molecular MRI. Curr Opin Biotechnol, 2007, 18: 4–10

    Article  Google Scholar 

  16. Sosnovik D E, Nahrendorf M, Weissleder R. Molecular magnetic resonance imaging in cardiovascular medicine. Circulation, 2007, 115: 2076–2086

    Article  Google Scholar 

  17. Chapon C, Franconi F, Lacoeuille F, et al. Imaging E-selectin expression following traumatic brain injury in the rat using a targeted USPIO contrast agent. MAGMA, 2009, 22: 167–174

    Article  Google Scholar 

  18. Burtea C, Laurent S, Vander Elst L, et al. Contrast agents: Magnetic resonance. Handb Exp Pharmacol, 2008, 185: 135–165

    Article  Google Scholar 

  19. Liu S, Wei X, Chu M, et al. Synthesis and characterization of iron oxide/polymer composite nanoparticles with pendent functional groups. Colloids Surf B Biointerfaces, 2006, 51: 101–106

    Article  Google Scholar 

  20. Bratosin D, Mitrofan L, Palii C, et al. Novel fluorescence assay using calcein-AM for the determination of human erythrocyte viability and aging. Cytometry A, 2005, 66: 78–84

    Google Scholar 

  21. Herschman H R. Molecular imaging: Looking at problems, seeing solutions. Science, 2003, 302: 605–608

    Article  Google Scholar 

  22. Massoud T F, Gambhir S S. Molecular imaging in living subjects: Seeing fundamental biological processes in a new light. Genes Dev, 2003, 17: 545–580

    Article  Google Scholar 

  23. McCarthy J R, Weissleder R. Multifunctional magnetic nanoparticles for targeted imaging and therapy. Adv Drug Deliv Rev, 2008, 60: 1241–1251

    Article  Google Scholar 

  24. Rehman S, Jayson G C. Molecular imaging of antiangiogenic agents. Oncologist, 2005, 10: 92–103

    Article  Google Scholar 

  25. Haubner R, Gratias R, Diefenbach B, et al. Structural and functional aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin αvβ3 antagonists. J Am Chem Soc, 1996, 118: 7461–7472

    Article  Google Scholar 

  26. Sipkins D A, Cheresh D A, Kazemi M R, et al. Detection of tumor angiogenesis in vivo by αvβ3-targeted magnetic resonance imaging. Nat Med, 1998, 4: 623–636

    Article  Google Scholar 

  27. Winter P M, Caruthers S D, Kassner A, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel αvβ3-targeted nanoparticle and 1.5 Tesla magnetic resonance imaging. Cancer Res, 2003, 63: 5838–5843

    Google Scholar 

  28. Schmieder A H, Winter P M, Caruthers S D, et al. Molecular MR imaging of melanoma angiogenesis with αvβ3-targeted paramagnetic nanoparticles. Magn Reson Med, 2005, 53: 621–627

    Article  Google Scholar 

  29. Mulder W J, Strijkers G J, Habets J W, et al. MR molecular imaging and fluorescence microscopy for identification of activated tumor endothelium using a bimodal lipidic nanoparticle. FASEB J, 2005, 19: 2008–2010

    Google Scholar 

  30. Bulte J W, Kraitchman D L. Iron oxide MR contrast agents for molecular and cellular imaging. NMR Biomed, 2004, 17: 484–499

    Article  Google Scholar 

  31. Tsushima Y, Endo K. Hypointensities in the brain on T2*-weighted gradient-echo magnetic resonance imaging. Curr Probl Diagn Radiol, 2006, 35: 140–150

    Article  Google Scholar 

  32. Thamburaj K, Radhakrishnan V V, Thomas B, et al. Intratumoral microhemorrhages on T2*-weighted gradient-echo imaging helps differentiate vestibular schwannoma from meningioma. AJNR Am J Neuroradiol, 2008, 29: 552–557

    Article  Google Scholar 

  33. Tosaka M, Sato N, Hirato J, et al. Assessment of hemorrhage in pituitary macroadenoma by T2*-weighted gradient-echo MR imaging. AJNR Am J Neuroradiol, 2007, 28: 2023–2029

    Article  Google Scholar 

  34. Zhang C, Jugold M, Woenne E C, et al. Specific targeting of tumor angiogenesis by RGD-conjugated ultrasmall superparamagnetic iron oxide particles using a clinical 1.5-T magnetic resonance scanner. Cancer Res, 2007, 67: 1555–1562

    Article  Google Scholar 

  35. Maehara N. Experimental microcomputed tomography study of the 3D microangio architecture of tumors. Eur Radiol, 2003, 13: 1559–1565

    Article  Google Scholar 

  36. Jiang H J, Zhang Z R, Shen B Z, et al. Quantification of angiogenesis by CT perfusion imaging in liver tumor of rabbit. Hepatobiliary Pancreat Dis Int, 2009, 8: 168–173

    Google Scholar 

  37. Lee K H, Liapi E, Buijs M, et al. Considerations for implantation site of Vx-2 carcinoma into rabbit liver. J Vasc Interv Radiol, 2009, 20: 113–117

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MinMing Zhang.

About this article

Cite this article

Wu, X., Zhang, J., Lin, B. et al. Molecular imaging of tumor angiogenesis using RGD-labeled iron oxide nanoparticles. Chin. Sci. Bull. 55, 2662–2670 (2010). https://doi.org/10.1007/s11434-010-4004-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-4004-8

Keywords

Navigation