Skip to main content
Log in

Synthesis of β-cyclodextrin-modified carbon nanocrystals and their fluorescent behavior

  • Article
  • Organic Chemistry
  • Published:
Chinese Science Bulletin

Abstrac

Water-soluble β-cyclodextrin (β-CD)-modified carbon nanocrystals (CNCs) have been synthesized by the reaction of CNCs with mono(6-diethylenetriamino-6-deoxy)-β-CD (DETA-β-CD) and comprehensively characterized by 1H NMR, FT-IR, transmission electron microscopy (TEM) and UV-Vis. DETA-β-CD-modified CNCs (DETA-β-CD-CNCs) are luminescent, and the quantum yield is 8.41%. The photoinduced electron transfer (PET) process between DETA-β-CD-CNCs and (ferrocenylmethyl) trimethylammonium iodide (Fc+) was investigated by means of fluorescence spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sun Y P, Zhou B, Lin Y, et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J Am Chem Soc, 2006, 128: 7756–7757

    Article  Google Scholar 

  2. Cao L, Wang X, Meziani, M J, et al. Carbon dots for multiphoton bioimaging. J Am Chem Soc, 2007, 129: 11318–11319

    Article  Google Scholar 

  3. Zhao Q L, Zhang Z L, Huang B H, et al. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphitew. Chem Commun, 2008, 41: 5116–5118

    Article  Google Scholar 

  4. Zhou J, Booker C, Li R, et al. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). J Am Chem Soc, 2007, 129: 744–745

    Article  Google Scholar 

  5. Bottini M, Balasubramanian C, Dawson M I, et al. Isolation and characterization of fluorescent nanoparticles from pristine and oxidized electric arc-produced single-walled carbon nanotubes. J Phys Chem B, 2006, 110: 831–836

    Article  Google Scholar 

  6. Xu X, Ray R, Gu Y, et al. Electrophoretic analysis and purification of fluorescent single-walled carbon nanotube fragments. J Am Chem Soc, 2004, 126: 12736–12737

    Article  Google Scholar 

  7. Liu H, Ye T, Mao C, et al. Fluorescent carbon nanoparticles derived from candle soot. Angew Chem Int Ed, 2007, 46: 6473–6475

    Article  Google Scholar 

  8. Bourlinos A B, Stassinopoulos A, Anglos D, et al. Surface functionalized carbogenic quantum dots. Small, 2008, 4: 455–458

    Article  Google Scholar 

  9. Bourlinos A B, Stassinopoulos A, Anglos D, et al. Photoluminescent carbogenic dots. Chem Mater, 2008, 20: 4539–4541

    Article  Google Scholar 

  10. Zheng L, Chi Y, Dong Y, et al. Electrochemiluminescence of water-soluble carbon nanocrystals released electrochemically from graphite. J Am Chem Soc, 2009, 131: 4564–4565

    Article  Google Scholar 

  11. Liu R, Wu D, Liu S, et al. An aqueous route to multicolor photoluminescent carbon dots using silica spheres as carriers. Angew Chem Int Ed, 2009, 48: 4598–4601

    Article  Google Scholar 

  12. Wang X, Cao L, Lu F, et al. Photoinduced electron transfers with carbon dots. Chem Commun, 2009, 25: 3774–3776

    Article  Google Scholar 

  13. Zh H, Wang X, Li Y, et al. Microwave synthesis of fluorescent carbon nanoparticles with electrochemiluminescence properties. Chem Commun, 2009, 34: 5118–5120

    Article  Google Scholar 

  14. Lu J, Yang J X, Wang J, et al. One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids. ACS Nano, 2009, 3: 2367–2375

    Article  Google Scholar 

  15. Myung N, Ding Z, Bard A J. Electrogenerated chemiluminescence of CdSe nanocrystals. Nano Lett, 2002, 2: 1315–1319

    Article  Google Scholar 

  16. Bae Y, Myung N, Bard A J. Electrochemistry and electrogenerated chemiluminescence of CdTe nanoparticles. Nano Lett, 2004, 4: 1153–1161

    Article  Google Scholar 

  17. Myung N, Bae Y, Bard A J. Effect of surface passivation on the electrogenerated chemiluminescence of CdSe/ZnSe nanocrystals. Nano Lett, 2003, 3: 1053–1055

    Article  Google Scholar 

  18. Loftsson T, Brewster M E. Pharmaceutical applications of cyclodextrins. 1. Drug solubilization and stabilization. J Pharm Sci, 1996, 85: 1017–1025

    Article  Google Scholar 

  19. Rajewskix R A, Stella V J. Pharmaceutical applications of cyclodextrins. 2. in vivo drug delivery. J Pharm Sci, 1996, 85: 1142–1169

    Article  Google Scholar 

  20. Irie T, Uekama K. Pharmaceutical applications of cyclodextrins. III. Toxicological issues and safety evaluation. J Pharm Sci, 1997, 86: 147–162

    Article  Google Scholar 

  21. Uekama K, Hirayama F, Irie T. Cyclodextrin drug carrier systems. Chem Rev, 1998, 98: 2045–2076

    Article  Google Scholar 

  22. Liu Y, Chen Y. Cooperative binding and multiple recognition by bridged bis(b-cyclodextrin)s with functional linkers. Acc Chem Res, 2006, 39: 681–691

    Article  Google Scholar 

  23. Loftsson T, Duchêne D. Cyclodextrins and their pharmaceutical applications. Int J Pharm, 2007, 329: 1–11

    Article  Google Scholar 

  24. Villalonga R, Cao R, Fragoso A. Supramolecular chemistry of cyclodextrins in enzyme technology. Chem Rev, 2007, 107: 3088–3116

    Article  Google Scholar 

  25. Chen Y, Liu Y. Cyclodextrin-based bioactive supramolecular assemblies. Chem Soc Rev, 2010, 39: 495–505

    Article  Google Scholar 

  26. Nepogodiev S A, Stoddart J F. Cyclodextrin-based catenanes and rotaxanes. Chem Rev, 1998, 98: 1959–1976

    Article  Google Scholar 

  27. Harada A. Cyclodextrin-based molecular machines. Acc Chem Res, 2001, 34: 456–464

    Article  Google Scholar 

  28. Wenz G, Han B H, Müller A. Cyclodextrin rotaxanes and polyrotaxanes. Chem Rev, 2006, 106: 782–817

    Article  Google Scholar 

  29. Tian H, Wang Q C. Recent progress on switchable rotaxanes. Chem Soc Rev, 2006, 35: 361–374

    Article  Google Scholar 

  30. Harada A, Takashima Y, Yamaguchi H. Cyclodextrin-based supramolecular polymers. Chem Soc Rev, 2009, 38: 875–882

    Article  Google Scholar 

  31. Harada A, Hashidaume A, Yamaguchi H, et al. Polymeric rotaxanes. Chem Rev, 2009, 109: 5974–6023

    Article  Google Scholar 

  32. Godínez L A, Patel S, Criss C M, et al. Calorimetric studies on the complexation of several ferrocene derivatives by.alpha.- and.beta.-cyclodextrin. effects of urea on the thermodynamic parameters. J Phys Chem B, 1995, 99: 17449–17455

    Article  Google Scholar 

  33. Zhang B, Breslow R. Enthalpic domination of the chelate effect in cyclodextrin dimmers. J Am Chem Soc, 1993, 115: 9353–9354

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

About this article

Cite this article

Jiang, Q., Zhang, H. & Liu, Y. Synthesis of β-cyclodextrin-modified carbon nanocrystals and their fluorescent behavior. Chin. Sci. Bull. 55, 2835–2839 (2010). https://doi.org/10.1007/s11434-010-3252-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3252-y

Keywords

Navigation