Skip to main content
Log in

Synthesis of lithium and aluminum complexes supported by [OC(But)CHP(Ph2)=NBut] ligand and catalysis of [R2Al{OC(But)-CHP(Ph2)=NBut}] (R = Me, Et) and [Me2Al{1-{OC(Ph)CH}-3-R1-5-MeC3HN2}] (R1 = Me, But) in the ring-opening polymerization of ɛ-caprolactone

  • Article
  • Organic Chemistry
  • Published:
Chinese Science Bulletin

Abstract

A series of lithium and aluminum complexes bearing [OC(But)CHP(Ph2)=NBut] ligand were synthesized and characterized. Reaction of ButC(O)CH2Br with Ph2PNHBut afforded [Ph2P(NHBut)CH2C(O)But]+Br (1). Treatment of 1 with excess of NaH in THF generated ligand precursor Ph2P(CH2C(O)But)=NBut (2). Reaction of 2 with AlR3 (R = Me, Et) gave N,O-chelate aluminum complexes [R2Al{OC(But)CHP(Ph2)=NBut}] (3, R = Me; 4, R = Et). Lithiation of 2 with an equiv. of LiBun formed lithium complex [Li{OC(But)CHP(Ph2)=NBut}] (5). Reaction of the lithium complex with an equiv. of AlCl3 yielded [Cl2Al{OC(But) CHP(Ph2)=NBut}] (6). Complex 6 was also obtained by reaction of 3 with an equiv. of AlCl3. Compounds 26 were characterized by NMR spectroscopy, elemental analysis and single crystal X-ray diffraction techniques (for 2, 3 and 6). Catalysis of complexes 3 and 4 as well as [Me2Al{1-{OC(Ph)CH}-3-R1-5-MeC3HN2}] (R1 = Me, But) toward the ring-opening polymerization of ɛ-caprolactone was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Keefe B J, Hillmyer M A, Tolman W B. Polymerization of lactide and related cyclic esters by discrete metal complexes. J Chem Soc, Dalton Trans, 2001, 2215–2224

  2. Edlund U, Albertsson A C. Degradable polymer microspheres for controlled drug delivery. Adv Polym Sci, 2002, 157: 67–112

    Article  Google Scholar 

  3. Mecerreyes D, Jérôme R, Dubois P. Novel macromolecular architectures based on aliphatic polyesters: Relevance of the “coordination-insertion” ring-opening polymerization. Adv Polym Sci, 1999, 147: 1–59

    Article  Google Scholar 

  4. Stridsberg K M, Ryner M, Albertsson A C. Controlled ring-opening polymerization: polymers with designed macromolecular architecture. Adv Polym Sci, 2002, 157: 41–65

    Article  Google Scholar 

  5. Dechy-Cabaret O, Martin-Vaca B, Bourissou D. Controlled ring-opening polymerization of lactide and glycolide. Chem Rev, 2004, 104: 6147–6176

    Article  Google Scholar 

  6. Amgoune A, Thomas C M, Carpentier J. Controlled ring-opening polymerization of lactide by group 3 metal complexes. Pure Appl Chem, 2007, 79: 2013–2030

    Article  Google Scholar 

  7. Aubrecht K B, Hillmyer M A, Tolman W B. Polymerization of lactide by monomeric Sn(II) alkoxide complexes. Macromolecules, 2002, 35: 644–650

    Article  Google Scholar 

  8. Wu J, Yu T L, Chen C T, et al. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord Chem Rev, 2006, 250: 602–626

    Article  Google Scholar 

  9. Chisholm M H, Patmore N J, Zhou Z P. Concerning the relative importance of enantiomorphic site vs. chain end control in the stereoselective polymerization of lactides: Reactions of (R,R-salen)- and (S,S-salen)-aluminium alkoxides LAlOCH2R complexes (R = CH3 and S-CHMeCl). Chem Commun, 2005, 127–129

  10. Zhong Z Y, Dijkstra P J, Feijen J. [(salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: Synthesis of highly isotactic polylactide stereocopolymers from racemic d,l-lactide. Angew Chem, Int Ed, 2002, 41: 4510–4513

    Article  Google Scholar 

  11. Bouyahyi M, Grunova E, Marquet N, et al. Aluminum complexes of fluorinated dialkoxy-diimino salen-like ligands: Syntheses, structures, and use in ring-opening polymerization of cyclic esters. Organometallics, 2008, 27: 5815–5825

    Article  Google Scholar 

  12. Darensbourg D J, Ganguly P, Billodeaux D. Ring-opening polymerization of trimethylene carbonate using aluminum(III) and tin(IV) salen chloride catalysts. Macromolecules, 2005, 38: 5406–5410

    Article  Google Scholar 

  13. Liu Y C, Ko B T, Lin C C. A highly efficient catalyst for the “living” and “immortal” polymerization of ε-caprolactone and L-lactide. Macromolecules, 2001, 34: 6196–6201

    Article  Google Scholar 

  14. Chen C T, Huang C A, Huang B H. Aluminium metal complexes supported by amine bis-phenolate ligands as catalysts for ring-opening polymerization of ε-caprolactone. Dalton Trans, 2003, 3799–3803

  15. Bhaw-Luximon A, Jhurry D, Spassky N. Controlled polymerization of DL-lactide using a Schiff’s base Al-alkoxide initiator derived from 2-hydroxyacetophenone. Polymer Bull, 2000, 44: 31–38

    Article  Google Scholar 

  16. Majerska K, Duda A. Stereocontrolled polymerization of racemic lactide with chiral initiator: Combining stereoelection and chiral ligand-exchange mechanism. J Am Chem Soc, 2004, 126: 1026–1027

    Article  Google Scholar 

  17. Hormnirun P, Marshall E L, Gibson V C, et al. Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands. J Am Chem Soc, 2004, 126: 2688–2689

    Article  Google Scholar 

  18. Nomura N, Aoyama T, Ishii R, et al. Salicylaldimine-aluminum complexes for the facile and efficient ring-opening polymerization of ɛ-caprolactone. Macromolecules, 2005, 38: 5363–5366

    Article  Google Scholar 

  19. Nomura N, Ishii R, Yamamoto Y, et al. Stereoselective ring-opening polymerization of a racemic lactide by using achiral salen- and homosalen-aluminum complexes. Chem Eur J, 2007, 13: 4433–4451

    Article  Google Scholar 

  20. Sisler H, Smith N. Some N-substituted aminodiphenylphosphines. J Org Chem, 1961, 26: 611–613

    Article  Google Scholar 

  21. Sheldrick G M. Phase annealing in SHELX-90: Direct methods for larger structures. Acta Crystallogr. Sect A 1990, 46: 467–473

    Article  Google Scholar 

  22. Sheldrick G M. SHELXL97. Programs for structure refinement. Universität Göttingen, 1997

  23. Corbridge D E C. Phosphorus. Amsterdam: Elsevier, 1985

    Google Scholar 

  24. Imhoff P, van Asselt R, Elsevier C J, et al. Synthesis, structure and reactivity of bis(N-aryl-iminophosphoranyl)methanes. X-ray crystal structures of (4-CH3C6H4N=PPh2)2CH2 and (4-NO2C6H4N=PPh2)2 CH2. Phosphorus, Sulfur, Silicon Related Elements, 1990, 47: 401–415

    Article  Google Scholar 

  25. Smith M B, March J. March’s advanced Organic Chemistry, 6th ed. Hoboken, New Jersey: Wiley-Interscience, 2007

    Google Scholar 

  26. Holloway C E, Melnik M. Organoaluminium compounds: Classification and analysis of crystallographic and structural data. J Organomet Chem, 1997, 543: 1–37

    Article  Google Scholar 

  27. Ong C M, McKarns P, Stephan D W. Neutral and cationic group 13 phosphinimine and phosphinimide complexes. Organometallics, 1999, 18: 4197–4204

    Article  Google Scholar 

  28. Hill M S, Hitchcock P B, Karagouni S M A. Group 1 and 13 complexes of aryl-substituted bis(phosphinimino)methyls. J Organomet Chem, 2004, 689: 722–730

    Article  Google Scholar 

  29. Wang Z X, Li Y X. Reactions of iminophosphorano(8-quinolyl) methane with AlMe3: Unexpected formation of aluminum iminophosphorano( 2-methyl-8-quinolyl)methandiide complex. Organometallics, 2003, 22: 4900–4904

    Article  Google Scholar 

  30. Chai Z Y, Zhang C, Wang Z X. Synthesis, characterization, and catalysis in ɛ-caprolactone polymerization of aluminum and zinc complexes supported by N,N,N-chelate ligands. Organometallics, 2008, 27: 1626–1633

    Article  Google Scholar 

  31. Yu R C, Hung C H, Huang J H, et al. Four- and five-coordinate aluminum ketiminate complexes: Synthesis, characterization, and ring-opening polymerization. Inorg Chem, 2002, 41: 6450–6455

    Article  Google Scholar 

  32. Ma H, Spaniol T P, Okuda J. Rare-earth metal complexes supported by 1,θ-dithiaalkanediyl-bridged bis(phenolato) ligands: Synthesis, structure, and heteroselective ring-opening polymerization of rac-lactide. Inorg Chem, 2008, 47: 3328–3339

    Article  Google Scholar 

  33. Qi C Y, Wang Z X. Synthesis and characterization of aluminum(III) and tin(II) complexes supported by diiminophosphinate ligands and their application in ring-opening polymerization catalysis of ɛ-caprolactone. J Polym Sci Part A Polym Chem, 2006, 44: 4621–4631

    Article  Google Scholar 

  34. Wang Z X, Yang D. Synthesis and characterization of aluminum complexes of 2-pyrazol-1-yl-ethenolate ligands. J Organomet Chem, 2005, 690: 4080–4086

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ZhongXia Wang.

About this article

Cite this article

Yang, D., Cai, C. & Wang, Z. Synthesis of lithium and aluminum complexes supported by [OC(But)CHP(Ph2)=NBut] ligand and catalysis of [R2Al{OC(But)-CHP(Ph2)=NBut}] (R = Me, Et) and [Me2Al{1-{OC(Ph)CH}-3-R1-5-MeC3HN2}] (R1 = Me, But) in the ring-opening polymerization of ɛ-caprolactone. Chin. Sci. Bull. 55, 2896–2903 (2010). https://doi.org/10.1007/s11434-010-3167-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3167-7

Keywords

Navigation