Skip to main content

Advertisement

Log in

Binuclear aluminum complexes supported by linked bis(β-diketiminate) ligands for ring-opening polymerization of cyclic esters

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Binuclear aluminum alkyl complexes 2a–4g supported by linked bis(β-diketiminate) ligands were synthesized via the reaction of AlEt3 or AlMe3 and the corresponding proligand in a 2:1 molar ratio with moderate yields. The isolated complexes were well-characterized by 1H-NMR, 13C-NMR and elemental analysis. The binuclear nature of aluminum complex 2b was further confirmed by an X-ray diffraction study. All complexes 2a–4g could efficiently initiate the ring-opening polymerization (ROP) of ε-caprolactone in toluene. The substituents at the aromatic rings and the linker unit in the auxiliary ligands exerted significant influence on the catalytic behavior of the investigated aluminum complexes. Complex 4g (R1 = R2 = Cl) containing propylenyl bridging unit exhibited the highest catalytic activity among these complexes, which might be attributed to the increased electrophilicity of the metal center as well as more opened coordination sphere. The molecular weights of obtained poly(ε-caprolactone)s deviating considerably from the theoretical values indicated that the ROP of ε-caprolactone by complexes 2a–4g was not well-controlled, which was also judged from the broad molecular weight distributions (MWD = 1.47–2.47) of produced poly(ε-caprolactone)s. These complexes proved to be inactive toward the polymerization of rac-lactide alone. In the presence of alcohol the polymerization occurred, which was actually initiated by the decomposition species of the aluminum complex upon the treatment with isopropanol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mecking, S. Nature or petrochemistry?—Biologically degradable materials. Angew. Chem. Int. Ed. 2004, 43, 1078–1085.

    Article  CAS  Google Scholar 

  2. Ragauskas, A. J.; Williams, C. K.; Davison, B. H.; Britovsek, G.; Cairney, J.; Eckert, C. A.; Frederick, W. J.; Hallett, J. P.; Leak, D. J.; Liotta, C. L.; Mielenz, J. R.; Murphy, R.; Templer, R.; Tschaplinski, T. The path forward for biofuels and biomaterials. Science 2006, 311, 484–489.

    Article  CAS  Google Scholar 

  3. Williams, C. K.; Hillmyer, M. A. Polymers from renewable resources: a perspective for a special issue of polymer reviews. Polym. Rev. 2008, 48, 1–10.

    Article  CAS  Google Scholar 

  4. Dechy-Cabaret, O.; Martin-Vaca, B.; Bourissou, D. Controlled ring-opening polymerization of lactide and glycolide. Chem. Rev. 2004, 104, 6147–6176.

    Article  CAS  Google Scholar 

  5. Wu, J.; Yu, T. L.; Chen, C. T.; Lin, C. C. Recent developments in main group metal complexes catalyzed/initiated polymerization of lactides and related cyclic esters. Coord. Chem. Rev. 2006, 250, 602–626.

    Article  CAS  Google Scholar 

  6. Platel, R. H.; Hodgson, L. M.; Williams, C. K. Biocompatible initiators for lactide polymerization. Polym. Rev. 2008, 48, 11–63.

    Article  CAS  Google Scholar 

  7. Thomas, C. M. Stereocontrolled ring-opening polymerization of cyclic esters: synthesis of new polyester microstructures. Chem. Soc. Rev. 2010, 39, 165–173.

    Article  CAS  Google Scholar 

  8. Stanford, M. J.; Dove, A. P. Stereocontrolled ring-opening polymerization of lactide. Chem. Soc. Rev. 2010, 39, 486–494.

    Article  CAS  Google Scholar 

  9. Cheng, M.; Attygalle, A. B.; Lobkovsky, E. B.; Coates, G. W. Single-site catalysts for ring-opening polymerization: synthesis of heterotactic poly(lactic acid) from rac-lactide. J. Am. Chem. Soc. 1999, 121, 11583–11584.

    Article  CAS  Google Scholar 

  10. Chamberlain, B. M.; Cheng, M.; Moore, D. R.; Ovitt, T. M.; Lobkovsky, E. B.; Coates, G. W. Polymerization of lactide with zinc and magnesium β-diiminate complexes: stereocontrol and mechanism. J. Am. Chem. Soc. 2001, 123, 3229–3238.

    Article  CAS  Google Scholar 

  11. Chisholm, M. H.; Gallucci, J.; Phomphrai, K. Coordination chemistry and reactivity of monomeric alkoxides and amides of magnesium and zinc supported by the diiminato ligand CH(CMeNC6H3-2,6-iPr2)2. A comparative study. Inorg. Chem. 2002, 41, 2785–2794.

    Article  CAS  Google Scholar 

  12. Williams, C. K.; Breyfogle, L. E.; Choi, S. K.; Nam, W.; Young, V. G.; Hillmyer, M. A.; Tolman, W. B. A highly active zinc catalyst for the controlled polymerization of lactide. J. Am. Chem. Soc. 2003, 125, 11350–11359.

    Article  CAS  Google Scholar 

  13. Dove, A.; Gibson, V. C.; Marshall, E.; White, A.; Williams, D. Magnesium and zinc complexes of a potentially tridentate β-diketiminate ligand. Dalton Trans., 2004, 570–578.

    Google Scholar 

  14. Silvernail, C. M.; Yao, L. J.; Hill, L. M. R.; Hillmyer, M. A.; Tolman, W. B. Structural and mechanistic studies of bis(phenolato)amine zinc(II) catalysts for the polymerization of ε-caprolactone. Inorg. Chem. 2007, 46, 6565–6574.

    Article  CAS  Google Scholar 

  15. Chuang, H. J.; Chen, H. Li.; Huang, B. H.; Tsai, T. E.; Huang, P. L.; Liao, T. T.; Lin, C. C. Efficient zinc initiators supported by NNO-tridentate ketiminate ligands for cyclic esters polymerization. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 1185–1196.

    Article  CAS  Google Scholar 

  16. Song, S.; Zhang, X.; Ma, H.; Yang, Y. Zinc complexes supported by claw-type aminophenolate ligands: synthesis, characterization and catalysis in the ring-opening polymerization of rac-lactide. Dalton Trans. 2012, 41, 3266–3277.

    Article  CAS  Google Scholar 

  17. Honrado, M.; Otero, A.; Fernández-Baeza, J.; Sánchez-Barba, L. F.; Lara-Sánchez, A.; Tejeda, J.; Carrión, M. P.; Martínez-Ferrer, J.; Garcés, A.; Rodríguez, A. M. Efficient synthesis of an unprecedented enantiopure hybrid scorpionate/cyclopentadienyl by diastereoselective nucleophilic addition to a fulvene. Organometallics 2013, 32, 3437–3440.

    Article  CAS  Google Scholar 

  18. Wang, H.; Ma, H. Highly Diastereoselective synthesis of chiral aminophenolate zinc complexes and isoselective polymerization of rac-lactide. Chem. Commun. 2013, 49, 8686–8688.

    Article  CAS  Google Scholar 

  19. Wang, H.; Yang, Y.; Ma, H. Stereoselectivity switch between zinc and magnesium initiators in the polymerization of rac-lactide: different coordination chemistry, different stereocontrol mechanisms. Macromolecules 2014, 47, 7750–7764.

    Article  CAS  Google Scholar 

  20. Mou, Z.; Liu, B.; Wang, M.; Xie, H.; Li, P.; Li, L.; Li, S.; Cui, D. Isoselective ring-opening polymerization of rac-lactide initiated by achiral heteroscorpionate zwitterionic zinc complexes. Chem. Commun. 2014, 50, 11411–11413.

    Article  CAS  Google Scholar 

  21. Abbina, S.; Du, G. Zinc-catalyzed highly isoselective ring opening polymerization of rac-lactide. ACS Macro Lett. 2014, 3, 689–692.

    Article  CAS  Google Scholar 

  22. Yang, Y.; Wang, H.; Ma, H. Stereoselective polymerization of rac-lactide catalyzed by zinc complexes with tetradentate aminophenolate ligands in different coordination patterns: kinetics and mechanism. Inorg. Chem. 2015, 54, 5839–5854.

    Article  CAS  Google Scholar 

  23. Wang, H.; Yang, Y.; Ma, H. Exploring steric effects in diastereoselective synthesis of chiral aminophenolate zinc complexes and stereoselective ring-opening polymerization of rac-lactide. Inorg. Chem. 2016, 55, 7356–7372.

    Article  CAS  Google Scholar 

  24. Rosen, T.; Popowski, Y.; Goldberg, I.; Kol, M. Zinc complexes of sequential tetradentate monoanionic ligands in the isoselective polymerization of rac-lactide. Chem. Eur. J. 2016, 22, 11533–11536.

    Article  CAS  Google Scholar 

  25. Shueh, M. L.; Wang, Y. S.; Huang, B. H.; Kuo, C. Y.; Lin, C. C. Reactions of 2,2-methylene bis(4-chloro-6-isopropyl-3-methylphenol) and 2,2-ethylidene bis(4,6-di-tert-butylphenol) with MgnBu2: efficient catalysts for ring-opening polymerization of ε-caprolactone and L-lactide. Macromolecules 2004, 37, 5155–5162.

    Article  CAS  Google Scholar 

  26. Yu, T. L.; Wu, C. C.; Chen, C. C.; Huang, B. H.; Wu, J.; Lin, C. C. Catalysts for the ring-opening polymerization of ε-caprolactone and L-lactide and the mechanistic study. Polymer 2005, 46, 5909–5917.

    Article  CAS  Google Scholar 

  27. Wang, L.; Ma, H. Highly active magnesium initiators for ring-opening polymerization of rac-LA. Macromolecules 2010, 43, 6535–6537.

    Article  CAS  Google Scholar 

  28. Song, S.; Ma, H.; Yang, Y. Magnesium complexes supported by salan-like ligands, synthesis, characterization and their application in the ring-opening polymerization of rac-lactide. Dalton Trans. 2013, 42, 14200–14211.

    Article  CAS  Google Scholar 

  29. Xie, H.; Mou, Z.; Liu, B.; Li, P.; Rong, W.; Li, S.; Cui, D. Phosphinimino-amino magnesium complexes, synthesis and catalysis of heteroselective ROP of rac-lactide. Organometallics 2014, 33, 722–730.

    Article  CAS  Google Scholar 

  30. Chisholm, M. H.; Gallucci, J. C.; Phomphrai, K. Well-defined calcium initiators for lactide polymerization. Inorg. Chem. 2004, 43, 6717–6725.

    Article  CAS  Google Scholar 

  31. Chisholm, M. H.; Gallucci, J. C.; Phomphrai, K. Lactide polymerization by well-defined calcium coordination complexes, comparisons with related magnesium and zinc chemistry. Chem. Commun. 2003, 48–49.

    Google Scholar 

  32. Darensbourg, D. J.; Choi, W.; Karroonnirun, O.; Bhuvanesh, N. Ring-opening polymerization of cyclic monomers by complexes derived from biocompatible metals. Production of poly(lactide), poly(trimethylene carbonate), and their copolymers. Macromolecules 2008, 41, 3493–3502.

    CAS  Google Scholar 

  33. Bhattacharjee, J.; Harinath, A.; Nayek, H. P.; Sarkar, A.; Panda, T. K. Highly active and iso-selective catalysts for the ring-opening polymerization of cyclic esters using group 2 metal initiators. Chem. Eur. J. 2017, 23, 9319–9331.

    Article  CAS  Google Scholar 

  34. Fuoco, T.; Pappalardo, D. Aluminum alkyl complexes bearing salicylaldiminato ligands: versatile initiators in the ring-opening polymerization of cyclic esters. Catalysts 2017, DOI: 10.3390/catal7020064

    Google Scholar 

  35. Huang, C. H.; Wang, F. C.; Ko, B. T.; Yu, T. L.; Lin, C. C. Ring-opening polymerization of ε-caprolactone and L-lactide using aluminum thiolates as initiator. Macromolecules 2001, 34, 356–361.

    Article  CAS  Google Scholar 

  36. Alcazar-Roman, L. M.; O’Keefe, B. J.; Hillmyer, M. A.; Tolman, W. B. Electronic influence of ligand substituents on the rate of polymerization of ε-caprolactone by single-site aluminium alkoxide catalysts. Dalton Trans. 2003, 3082–3087.

    Google Scholar 

  37. Chen, C. T.; Huang, C. A.; Huang, B. H. Aluminium metal complexes supported by amine bis-phenolate ligands as catalysts for ring-opening polymerization of ε-caprolactone. Dalton Trans. 2003, 3799–3803.

    Google Scholar 

  38. Chen, C. T.; Huang, C. A.; Huang, B. H. Aluminum complexes supported by tridentate aminophenoxide ligand as efficient catalysts for ring-opening polymerization of ε-caprolactone. Macromolecules 2004, 33, 7968–7973.

    Article  CAS  Google Scholar 

  39. Spassky, N.; Wisniewski, M.; Pluta, C.; LeBorgne, A. Highly stereoelective polymerization of rac-(D,L)-lactide with a chiral Schiff’s base/aluminium alkoxide initiator. Macromol. Chem. Phys. 1996, 197, 2627–2637.

    Article  CAS  Google Scholar 

  40. Radano, C. P.; Baker, G. L.; Smith, M. R. III. Stereoselective polymerization of a racemic monomer with a racemic catalyst: direct preparation of the polylactic acid stereocomplex from racemic lactide. J. Am. Chem. Soc. 2000, 122, 1552–1553.

    Article  CAS  Google Scholar 

  41. Nomura, N.; Ishii, R.; Akakura, M.; Aoi, K. Stereoselective ring-opening polymerization of racemic lactide using aluminum-achiral ligand complexes: exploration of a chain-end control mechanism. J. Am. Chem. Soc. 2002, 124, 5938–5939.

    Article  CAS  Google Scholar 

  42. Ovitt, T. M.; Coates, G. W. Stereochemistry of lactide polymerization with chiral catalysts: new wopportunities for stereocontrol using polymer exchange mechanisms. J. Am. Chem. Soc. 2002, 124, 1316–1326.

    Article  CAS  Google Scholar 

  43. Zhong, Z.; Dijkstra, P. J.; Feijen, J. [(Salen)Al]-mediated, controlled and stereoselective ring-opening polymerization of lactide in solution and without solvent: synthesis of highly isotactic polylactide stereocopolymers from racemic D, L-lactide. Angew. Chem. Int. Ed. 2002, 114, 4692–4695.

    Article  Google Scholar 

  44. Zhong, Z.; Dijkstra, P. J.; Feijen, J. Controlled and stereoselective polymerization of lactide: kinetics, selectivity, and microstructures. J. Am. Chem. Soc. 2003, 125, 11291–11298.

    Article  CAS  Google Scholar 

  45. Tang, Z.; Chen, X.; Pang, X.; Yang, Y.; Zhang, X.; Jing, X. Stereoselective polymerization of rac-lactide using a monoethylaluminum Schiff base complex. Biomacromolecules 2004, 5, 965–970.

    Article  CAS  Google Scholar 

  46. Hormnirun, P.; Marshall, E. L.; Gibson, V. C.; White, A. J. P.; Williams, D. J. Remarkable stereocontrol in the polymerization of racemic lactide using aluminum initiators supported by tetradentate aminophenoxide ligands. J. Am. Chem. Soc. 2004, 126, 2688–2689.

    Article  CAS  Google Scholar 

  47. Majerska, K.; Duda, A. Stereocontrolled polymerization of racemic lactide with chiral initiator: combining stereoselection and chiral ligand-exchang mechanism. J. Am. Chem. Soc. 2004, 126, 1026–1027.

    Article  CAS  Google Scholar 

  48. Chisholm, M. H.; Patmore, N. J.; Zhou, Z. Concerning the relative importance of enantiomorphic site versus chain end control in the stereoselective polymerization of lactides: reactions of (R,R-salen)- and (S,S-salen)–aluminium alkoxides LAlOCH2R complexes (R = CH3 and S-CHMeCl). Chem. Commun. 2005, 127–129.

    Google Scholar 

  49. Nomura, N.; Ishii, R.; Yamamoto, Y.; Kondo, T. Stereoselective ring-opening polymerization of a racemic lactide by using achiral salen- and homosalen-aluminum complexes. Chem. Eur. J. 2007, 13, 4433–4451.

    Article  CAS  Google Scholar 

  50. Du, H.; Pang, X.; Yu, H.; Zhuang, X.; Chen, X.; Cui, D.; Wang, X.; Jing, X. Polymerization of rac-lactide using Schiff base aluminum catalysts: structure, activity, and stereoselectivity. Macromolecules 2007, 40, 1904–1913.

    Article  CAS  Google Scholar 

  51. Chen, H. L.; Dutta, S.; Huang, P. Y.; Lin, C. C. Preparation and characterization of aluminum alkoxides coordinated on salen-type ligands: highly stereoselective ring-opening polymerization of rac-Lactide. Organometallics 2012, 31, 2016–2025.

    Article  CAS  Google Scholar 

  52. Maudoux, N.; Roisnel, T.; Dorcet, V.; Carpentier, J. F.; Sarazin, Y. Chiral (1,2)-diphenylethylene-salen complexes of triel metals: coordination patterns and mechanistic considerations in the isoselective ROP of lactide. Chem. Eur. J. 2014, 20, 6131–6147.

    Article  CAS  Google Scholar 

  53. Pilone, A.; Press, K.; Goldberg, I.; Kol, M.; Mazzeo, M.; Lamberti, M. Gradient isotactic multiblock polylactides from aluminum complexes of chiral salalen ligands. J. Am. Chem. Soc. 2014, 136, 2940–2943.

    Article  CAS  Google Scholar 

  54. Press, K.; Goldberg, I.; Kol, M. Mechanistic insight into the stereochemical control of lactide polymerization by salan-aluminum catalysts. Angew. Chem. Int. Ed. 2015, 54, 14858–14861.

    Article  CAS  Google Scholar 

  55. Douglas, A. F.; Patrick, B. O.; Mehrkhodavandi, P. A Highly active chiral indium catalyst for living lactide polymerization. Angew. Chem. Int. Ed. 2008, 120, 2322–2325.

    Article  Google Scholar 

  56. Yu, I.; Acosta-Ramírez, A.; Mehrkhodavandi, P. Mechanism of living lactide polymerization by dinuclear indium catalysts and its Impact on isoselectivity. J. Am. Chem. Soc. 2012, 134, 12758–12773.

    Article  CAS  Google Scholar 

  57. Aluthge, D. C.; Patrick, B. O.; Mehrkhodavandi, P. A Highly active and site selective indium catalyst for lactide polymerization. Chem. Commun. 2013, 49, 4295–4297.

    Article  CAS  Google Scholar 

  58. Aluthge, D. C.; Ahn, J. M.; Mehrkhodavandi, P. Overcoming aggregation in indium salen catalysts for isoselective lactide polymerization. Chem. Sci. 2015, 6, 5284–5292.

    Article  CAS  Google Scholar 

  59. Myers, D.; White, A. J. P.; Forsyth, C. M.; Bown, M.; Williams, C. K. Phosphasalen indium complexes showing high rates and isoselectivities in rac-lactide polymerizations. Angew. Chem. Int. Ed. 2017, 56, 5277–5282.

    Article  CAS  Google Scholar 

  60. Zhang, J.; Xiong, J.; Sun, Y.; Tang, N.; Wu, J. Highly iso-selective and active catalysts of sodium and potassium monophenoxides capped by a crown ether for the ring-opening polymerization of rac-lactide. Macromolecules 2014, 47, 7789–7796.

    Article  CAS  Google Scholar 

  61. Dai, Z.; Sun, Y.; Xiong, J.; Pan, X.; Wu, J. Alkali-metal monophenolates with a sandwich-type catalytic center as catalysts for highly isoselective polymerization of rac-lactide. ACS Macro Lett. 2015, 4, 556–560.

    Article  CAS  Google Scholar 

  62. Sun, Y.; Xiong, J.; Dai, Z.; Pan, X.; Tang, N.; Wu, J. Stereoselective alkali-metal catalysts for highly isotactic poly(rac-lactide) synthesis. Inorg. Chem. 2016, 55, 136–143.

    Article  CAS  Google Scholar 

  63. Russell, S. K.; Gamble, C. L.; Gibbins, K. J.; Juhl, K. C. S.; Mitchell, III, W. S.; Tumas, A. J.; Hofmeister, E. G. Stereoselective controlled polymerization of D, L-lactide with [Ti(trisphenolate)O-i-Pr]2 initiators. Macromolecules 2005, 38, 10336–10340.

    Article  CAS  Google Scholar 

  64. Chmura, A. J.; Davidson, M. G.; Frankis, C. J.; Jones, M. D.; Lunn, M. D. Highly active and stereoselective zirconium and hafnium alkoxide initiators for solvent-free ring-opening polymerization of rac-lactide. Chem. Commun. 2008, 1293–1295.

    Google Scholar 

  65. Zelikoff, A. L.; Kopilov, J.; Goldberg, I.; Coates, G. W.; Kol, M. New facets of an old ligand, titanium and zirconium complexes of phenylenediamine bis(phenolate) in lactide polymerisation catalysis. Chem. Commun. 2009, 6804–6806.

    Google Scholar 

  66. Whitelaw, E.; Davidson, M.; Jones, M. Group 4 salalen complexes for the production and degradation of polylactide. Chem. Comm. 2011, 47, 10004–10006.

    Article  CAS  Google Scholar 

  67. Stopper, A.; Okuda, J.; Kol, M. Ring-opening polymerization of lactide with Zr complexes of {ONSO} ligands: from heterotactically inclined to isotactically inclined poly(lactic acid). Macromolecules 2012, 45, 698–704.

    Article  CAS  Google Scholar 

  68. Jones, M. D.; Hancock, S. L.; McKeown, P.; Schäfer, P. M.; Buchard, A.; Thomas, L. H.; Mahon, M. F.; Lowe, J. P. Zirconium complexes of bipyrrolidine derived salan ligands for the isoselective polymerisation of rac-lactide. Chem. Commun. 2014, 50, 15967–15970.

    Article  CAS  Google Scholar 

  69. Jones, M. D.; Brady, L.; McKeown, P.; Buchard, A.; Schafer, P. M.; Thomas, L. H.; Mahon, M. F.; Woodman, T. J.; Lowe, J. P. Metal influence on the iso- and hetero-selectivity of complexes of bipyrrolidine derived salan ligands for the polymerisation of rac-lactide. Chem. Sci. 2015, 6, 5034–5039.

    Article  CAS  Google Scholar 

  70. Cai, C. X.; Amgoune, A.; Lehmann, C. W.; Carpentier, J. F. Stereoselective ring-opening polymerization of racemic lactide using alkoxy-amino-bis(phenolate) group 3 metal complexes. Chem. Commun. 2004, 330–331.

    Google Scholar 

  71. Ma, H.; Spaniol, T.; Okuda, J. Highly heteroselective ring-opening polymerization of rac-lactide initiated by bis(phenolato) scandium complexes. Angew. Chem. Int. Ed. 2006, 45, 7818–7821.

    Article  Google Scholar 

  72. Amgoune, A.; Thomas, C. M.; Roisnel, T.; Carpentier, J. F. Ring-opening polymerization of lactide with group 3 metal complexes supported by dianionic alkoxy-amino-bisphenolate ligands, combining high activity, productivity and selectivity. Chem. Eur. J. 2006, 12, 169–179.

    Article  CAS  Google Scholar 

  73. Amgoune, A.; Thomas, C. M.; Carpentier, J. F. Yttrium complexes as catalysts for living and immortal polymerization of lactide to highly heterotactic PLA. Macromol. Rapid Commun. 2007, 28, 693–697.

    Article  CAS  Google Scholar 

  74. Liu, X.; Shang, X.; Tang, T.; Cui, D.; Chen, X.; Jing, X. Achiral lanthanide alkyl complexes bearing N, O multidentate ligands, synthesis and catalysis of highly heteroselective ring-opening polymerization of rac-lactide. Organometallics 2007, 26, 2747–2757.

    Article  CAS  Google Scholar 

  75. Arnold, P. L.; Buffet, J. C.; Blaudeck, R. P.; Sujecki, S.; Blake, A. J.; Wilson, C. A. C3-Symmetric lanthanide tris(alkoxide) complexes formed by preferential complexation and their stereoselective polymerization of rac-lactide. Angew. Chem. Int. Ed. 2008, 47, 6033–6036.

    Article  CAS  Google Scholar 

  76. Clark, L; Cushion, M.; Dyer, H.; Schwarz, A.; Duchateau, R.; Mountford, P. Dicationic and zwitterionic catalysts for the amine-initiated, immortal ring-opening polymerization of rac-lactide: facile synthesis of amine-terminated, highly heterotactic PLA. Chem. Commun. 2010, 46, 273–275.

    Article  CAS  Google Scholar 

  77. Yang, S.; Zhu Du, Zhang, Y.; Shen, Q. Highly Heteroselective ring-opening polymerization of racemic lactide initiated by divalent ytterbium complexes bearing amino bis(phenolate) ligands. Chem. Commun. 2012, 48, 9780–9782.

    Article  CAS  Google Scholar 

  78. Cao, T. P. A.; Buchard, A.; Goff, X. F. L.; Auffrant, A.; Williams, C. K. Phosphasalen yttrium complexes, highly active and stereoselective initiators for lactide polymerization. Inorg. Chem. 2012, 51, 2157–2169.

    Article  CAS  Google Scholar 

  79. Bakewell, C.; Cao, T. P. A.; Long, N.; Le Goff, X. F.; Auffrant, A.; Williams, C. K. Yttrium phosphasalen initiators for rac-lactide polymerization: excellent rates and high iso-selectivities. J. Am. Chem. Soc. 2012, 134, 20577–20580.

    Article  CAS  Google Scholar 

  80. Bakewell, C.; White, A. J. P.; Long, N. J.; Auffrant, A.; Williams, C. K. Metal-size influence in iso-selective lactide polymerization. Angew. Chem. Int. Ed. 2014, 53, 9226–9230.

    Article  CAS  Google Scholar 

  81. Xu, T. Q.; Yang, G. W.; Liu, C.; Lu, X. B. Highly robust yttrium bis(phenolate) ether catalysts for excellent isoselective ring-opening polymerization of racemic lactide. Macromolecules 2017, 50, 515–522.

    Article  CAS  Google Scholar 

  82. Chakraborty, D.; Chen, E. Y. X. Neutral, three-coordinate, chelating diamide aluminum complexes: catalysts/initiators for synthesis of telechelic oligomers and high polymers. Organometallics 2002, 21, 1438–1442.

    Article  CAS  Google Scholar 

  83. Chai, Z. Y.; Zhang, C.; Wang, Z. X. Synthesis, characterization, and catalysis in ε-caprolactone polymerization of aluminum and zinc complexes supported by N,N,N-chelate ligands. Organometallics 2008, 27, 1626–1633.

    Article  CAS  Google Scholar 

  84. Yao, W.; Mu, Y.; Gao, A. H.; Su, Q.; Liu; Y. J.; Zhang, Y. Y. Efficient ring-opening polymerization of ε-caprolactone using anilido-imine-aluminum complexes in the presence of benzyl alcohol. Polymer 2008, 49, 2486–2491.

    Article  CAS  Google Scholar 

  85. Yao, W.; Mu, Y.; Gao, A.; Wei, W.; Ye, L. Bimetallic anilido-aldimine Al or Zn complexes for efficient ring-opening polymerization of ε-caprolactone. Dalton Trans. 2008, 3199–3206.

    Google Scholar 

  86. Liu, J.; Ma, H. Aluminum complexes with bidentate amido ligands: synthesis, structure and performance on ligand-initiated ring-opening polymerization of rac-lactide. Dalton Trans. 2014, 43, 9098–9110.

    Article  CAS  Google Scholar 

  87. Liu, J.; Ma, H. Well-controlled ring-opening polymerization of cyclic esters catalyzed by aluminum amido complexes: kinetics and mechanism. J. Polym. Sci., A: Polym. Chem. 2014, 52, 3096–3106.

    Article  CAS  Google Scholar 

  88. Kosuru, S. R.; Sun, T. H.; Wang, L. F.; Vandavasi, J. K.; Lu, W. Y.; Lai, Y. C.; Hsu, S. C. N.; Chiang, M. Y.; Chen, H. Y. Enhanced catalytic activity of aluminum complexes for the ring-opening polymerization of ε-caprolactone. Inorg. Chem. 2017, 56, 7998–8006.

    Article  CAS  Google Scholar 

  89. Gong, S.; Ma, H. β-Diketiminate aluminum complexes: synthesis, characterization and ring-opening polymerization of cyclic esters. Dalton Trans. 2008, 3345–3357.

    Google Scholar 

  90. Pilz, M.; Limberg, C.; Ziemer, B. Xanthene-based ligand with two adjacent β-diiminato binding sites. J. Org. Chem. 2006, 71, 4559–4564.

    Article  CAS  Google Scholar 

  91. Hebden, T.; Brennessel, W.; Flaschenriem, C.; Holland, P. A dinucleating ligand related to the β-diketiminates. Dalton Trans. 2006, 3855–3857.

    Google Scholar 

  92. Vela, J.; Zhu, L.; Flaschenriem, C.; Brennessel, W. Macrocyclic binucleating β-diketiminate ligands and their lithium, aluminum, and zinc complexes. Organometallics 2007, 26, 3416–3423.

    Article  CAS  Google Scholar 

  93. Vitanova, D.; Hampel, F.; Hultzsch, K. Synthesis and structural characterisation of novel linked bis(b-diketiminato) rare earth metal complexes. Dalton Trans. 2005, 1565–1566.

    Google Scholar 

  94. Vitanova, D.; Hampel, F.; Hultzsch, K. Rare earth complexes based on β-diketiminato and novel linked bis(β-diketiminato) ligands: synthesis, structures characterization and catalytic application in epoxide/CO2-copolymerization. J. Organomet. Chem. 2005, 690, 5182–5197.

    Article  CAS  Google Scholar 

  95. Gong, S.; Ma, H.; Huang, J. Zirconium and hafnium complexes supported by linked bis(β-diketiminate) ligands: synthesis, characterization and catalytic application in ethylene polymerization. Dalton Trans. 2009, 8237–8247.

    Google Scholar 

  96. SADABS, Bruker Nonius area detector scaling and absorption correction-V2.05; Bruker AXS Inc.: Madison, WI,1996.

  97. Sheldrick, G. M. SHELXTL 5.10 for windows NT, Structure Determination Software Programs; Bruker Analytical X-ray Systems, Inc.: Madison, WI, 1997.

    Google Scholar 

  98. SAINT, Version 6.02; Bruker AXS Inc.: Madison, WI, 1999.

    Google Scholar 

  99. Sheldrick, G. M. SHELXS-97, Program for the Solution of Crystal Structures; University of Gottingen: Germany, 1990.

    Google Scholar 

  100. Sheldrick, G. M. SHELXL-97, Program for the Refinement of Crystal Structures; University of Gottingen: Germany, 1997.

    Google Scholar 

  101. Johnson, C. K. ORTEP-II: A FORTRAN Thermal Ellipsoid Plot Program for Crystal Structure Illustrations, Report ORNL-5138, Oak Ridge National Laboratory, Oak Ridge, TN, USA, 1976.

    Book  Google Scholar 

  102. Nomura, N.; Aoyama, T.; Ishii, R.; Kondo, T. Salicylaldimine-aluminum complexes for the facile and efficient ring-opening polymerization of ε-caprolactone. Macromolecules 2005, 38, 5363–5366.

    Article  CAS  Google Scholar 

  103. Radzewich, C. E.; Coles, M. P.; Jordan, R. F. Reversible ethylene cycloaddition reactions of cationic aluminum β-diketiminate complexes. J. Am. Chem. Soc. 1998, 120, 9384–9385.

    Article  CAS  Google Scholar 

  104. Li, D.; Peng, Y.; Geng, C.; Liu, K.; Kong, D. Well-controlled ring-opening polymerization of cyclic esters initiated by dialkylaluminum β-diketiminates. Dalton Trans. 2013, 42, 11295–11303.

    Article  CAS  Google Scholar 

  105. Hao, P.; Yang, Z.; Li, W.; Ma, X.; Roesky, H. W.; Yang, Y.; Li, J. Aluminum complexes containing the C―O―Al―O―C framework as efficient initiators for ring-opening polymerization of ε-caprolactone. Organometallics 2015, 34, 105–108.

    Article  CAS  Google Scholar 

  106. Lu, N.; Jiang, Z.; Pei, H.; Liu, W.; Li, Y.; Dong, Y. Ring-opening polymerization of ε-caprolactone initiated by aluminium complexes based on pyridine-substituted asymmetric β-diketiminate ligands. Eur. J. Inorg. Chem. 2017, 1320–1327.

    Google Scholar 

  107. Lewiński, J.; Horeglad, P.; Wojcik, K.; Justyniak, I. Chelation effect in polymerization of cyclic esters by metal alkoxides: structure characterization of the intermediate formed by primary insertion of lactide into the Al―OR bond of an organometallic initiator. Organometallics 2005, 24, 4588–4593.

    Article  CAS  Google Scholar 

  108. Yu, R.; Hung, C.; Huang, J.; Lee, H.; Chen, J. Four- and five-coordinate aluminum ketiminate complexes: synthesis, characterization, and ring-opening polymerization. Inorg. Chem. 2002, 41, 6450–6455.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 20604009 and 21474028).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Ma.

Additional information

Invited paper for special issue of “Metal-Catalyzed Polymerization”

Electronic supplementary material

10118_2018_2053_MOESM1_ESM.pdf

Binuclear Aluminum Complexes Supported by Linked Bis(β-diketiminate) Ligands for Ring-Opening Polymerization of Cyclic Esters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, S., Du, P. & Ma, H. Binuclear aluminum complexes supported by linked bis(β-diketiminate) ligands for ring-opening polymerization of cyclic esters. Chin J Polym Sci 36, 190–201 (2018). https://doi.org/10.1007/s10118-018-2053-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-018-2053-7

Keywords

Navigation