Skip to main content
Log in

Asymmetric epoxidation of α,β-unsaturated ketones using α,α-diarylprolinols as catalysts

  • Review
  • Special Topic: Asymmetric Organocatalysis
  • Published:
Chinese Science Bulletin

Abstract

Asymmetric epoxidation of α,β-unsaturated ketones has been extensively studied and several important procedures have been developed in the last decade. This review addresses the most significant advances in asymmetric epoxidation of α,β-unsaturated ketones using proline-derived α,α-diarylprolinols as catalysts. Special attention has been paid to the enantioselective epoxidation of chalcones, α,β-unsaturated trifluoromethyl, trichloromethyl ketones and β,γ-unsaturated α-keto esters based on the reseach of our group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bonini C, Righi G. A critical outlook and comparison of enantioselective oxidation methodologies of olefins. Tetrahedron, 2002, 58: 4981–5021

    Article  Google Scholar 

  2. Johnson R A, Sharpless K B. In: Ojima I ed. Catalytic Asymmetric Synthesis. New York: VCH, 2000. Chapter 6A

    Google Scholar 

  3. Zhang W, Basak A, Kosugi Y, et al. Enantioselective epoxidation of allylic alcohols by a chiral complex of vanadium: An effective controller system and a rational mechanistic model. Angew Chem Int Ed, 2005, 44: 4389–4391

    Article  Google Scholar 

  4. Zhang W, Yamamoto H. Vanadium-catalyzed asymmetric epoxidation of homoallylic alcohols. J Am Chem Soc, 2007, 129: 286–287

    Article  Google Scholar 

  5. Xia Q H, Ge H Q, Ye C P, et al. Advances in homogeneous and heterogeneous catalytic asymmetric epoxidation. Chem Rev, 2005, 105: 1603–1662

    Article  Google Scholar 

  6. Christmann M. Selective oxidation of aliphatic C-H bonds in the synthesis of complex molecules. Angew Chem Int Ed, 2008, 47: 2740–2742

    Article  Google Scholar 

  7. Shi Y. Organocatalytic asymmetric epoxidation of olefins by chiral ketones. Acc Chem Res, 2004, 37: 488–496

    Article  Google Scholar 

  8. Adam W, Saha-Möller C R, Ganeshpure P A. Synthetic applications of nonmetal catalysts for homogeneous oxidations. Chem Rev, 2001, 101: 3499–3548

    Article  Google Scholar 

  9. Matsunaga S, Qin H, Sugita M, et al. Catalytic asymmetric epoxidation of α, β-unsaturated N-acylpyrroles as monodentate and activated ester equivalent acceptors. Tetrahedron, 2006, 62: 6630–6639

    Article  Google Scholar 

  10. Weitz E, Scheffer A. The impact of alkali hydrogen superoxyde on unsaturated compounds. Ber Dtsch Chem Ges, 1921, 54: 2327–2344

    Article  Google Scholar 

  11. Pluim H, Wynberg H. Catalytic asymmetric induction in oxidation reactions-synthesis of optically-active epoxynaphthoquinones. J Org Chem, 1980, 45: 2498–2502

    Article  Google Scholar 

  12. Juliá S, Guixer J, Masana J, et al. Synthetic enzymes. 2. catalytic asymmetric epoxidation by means of polyamino-acids in a triphase system. J Chem Soc Perkin Trans 1, 1982, 6: 1317–1324

    Article  Google Scholar 

  13. Lattanzi A. Enantioselective epoxidation of α, β-enones promoted by α, α-diphenyl-L-prolinol as bifunctional organocatalyst. Org Lett, 2005, 7: 2579–2582

    Article  Google Scholar 

  14. Liu X Y, Li Y W, Wang G Y, et al. Effective and recyclable dendritic ligands for the enantioselective epoxidation of enones. Tetrahedron: Asymmetry, 2006, 17: 750–755

    Article  Google Scholar 

  15. van Heerbeek R, Kamer P C J, van Leeuwen P W N M, et al. Dendrimers as support for recoverable catalysts and reagents. Chem Rev, 2002, 102: 3717–3756

    Article  Google Scholar 

  16. Dijkstra H P, van Klink G P M, van Koten G. The use of ultra- and nanofiltration techniques in homogeneous catalyst recycling. Acc Chem Res, 2002, 35: 798–810

    Article  Google Scholar 

  17. Fan Q H, Chen Y M, Chen X M, et al. Highly effective and recyclable dendritic BINAP ligands for asymmetric hydrogenation. Chem Commun, 2000, 789–790

  18. Liu X Y, Wu X Y, Chai Z, et al. Highly effective and recyclable dendritic ligands for the enantioselective aryl transfer reactions to aldehydes. J Org Chem, 2005, 70: 7432–7435

    Article  Google Scholar 

  19. Lattanzi A. Bis(3,5-dimethylphenyl)-(S)-pyrrolidin-2-ylmethanol: An improved organocatalyst for the asymmetric epoxidation of α, β-enones. Adv Synth Catal, 2006, 348: 339–346

    Article  Google Scholar 

  20. Lattanzi A, Russo A. Diaryl-2-pyrrolidinemethanols catalyzed enantioselective epoxidation of α, β-enones: New insight into the effect of structural modification of the catalyst on reaction efficiency. Tetrahedron, 2006, 62: 12264–12269

    Article  Google Scholar 

  21. Li Y W, Liu X Y, Zhao G. 4-Substituted-α, α-diaryl-prolinols improve the enantioselective catalytic epoxidation of α, β-enones. J Org Chem, 2007, 72: 288–291

    Article  Google Scholar 

  22. Zheng C W, Li Y W, Yang Y Q, et al. Highly efficient asymmetric epoxidation of electron-deficient α, β-enones and related applications to organic synthesis. Adv Synth Catal, 2009, 351: 1685–1691

    Article  Google Scholar 

  23. Buschmann H H, Antoni T J, Susana Y M, et al. PCT Int Appl 2007 WO 2007000329

  24. Zhang X Q, Li X J, Allan G F, et al. Design, synthesis, and in vivo SAR of a novel series of pyrazolines as potent selective androgen receptor modulators. J Med Chem, 2007, 50: 3857–3869

    Article  Google Scholar 

  25. Druzian J, Zucco C, Rezende M C, et al. Aminolysis of 2,2,2-trichloro-1-arylethanones in aprotic solvents. J Org Chem, 1989, 54: 4767–4771

    Article  Google Scholar 

  26. Yang L, Zheng Q Y, Wang D X, et al. Reversal of nucleophilicity of enamides in water: Control of cyclization pathways by reaction media for the orthogonal synthesis of dihydropyridinone and pyrrolidinone Clausena alkaloids. Org Lett, 2008, 10: 2461–2464

    Article  Google Scholar 

  27. Johansen M B, Leduc A B, Kerr M A. Concise biomimetic total syntheses of both antipodes of balasubramide. Synlett, 2007, 2593–2595

  28. Taniguchi M, Fujii H, Oshima K, et al. Stereoselective reduction of alpha,beta-epoxy ketones with sodium-borohydride in the presence of calcium-chloride or lanthanum chloride-a practical preparation of erythro-α, β-epoxy alcohols. Tetrahedron, 1995, 51: 679–686

    Article  Google Scholar 

  29. Yadav J S, Raju A K, Rao P P, et al. Highly stereoselective synthesis of antitumor agents: Both enantiomers of goniothales diol, altholactone, and isoaltholactone. Tetrahedron: Asymmetry, 2005, 16: 3283–3290

    Article  Google Scholar 

  30. Vilotijevic I, Jamison T F. Epoxide-opening cascades promoted by water. Science, 2007, 317: 1189–1192

    Article  Google Scholar 

  31. Pedro de M, Rolf H. Carbonyl ylides from aldehydes and carbenes. J Am Chem Soc, 1982, 104: 4952

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zhao.

About this article

Cite this article

Zheng, C., Zhao, G. Asymmetric epoxidation of α,β-unsaturated ketones using α,α-diarylprolinols as catalysts. Chin. Sci. Bull. 55, 1712–1722 (2010). https://doi.org/10.1007/s11434-010-3129-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-010-3129-0

Keywords

Navigation