Skip to main content
Log in

Partial melting of deeply subducted continental crust and the formation of quartzofeldspathic polyphase inclusions in the Sulu UHP eclogites

  • Special Topic/Articles/Geology
  • Published:
Chinese Science Bulletin

Abstract

Two types of quartzofeldspathic inclusions hosted by omphacite and garnet were identified in the Sulu UHP eclogites. The first consists of albite, quartz, and various amounts of K-feldspar. In contrast, the second consists predominantly of K-feldspar and quartz without any albite. The presence of quartzofeldspathic inclusions within the UHP mafic eclogites indicates that partial melting occurred in deeply subducted continental crust via mica dehydration melting reactions at an early stage of rapid exhumation. Such a melting event generated hydrous Na-K-Al-Si melts. These melts infiltrated into the mafic eclogite and were captured by recrystallizing garnet or omphacite, which together followed by dehydration and crystallization to form feldspar-bearing polyphase inclusions. Formation of silicate melts within the deeply subducted continental slab not only provides an excellent medium to transport both mobile (LILE) and immobile (HFSE) elements over a large distance, but also induces effective changes in the physical properties of the UHP slab. This process could be a major factor that enhances rapid exhumation of a deeply subducted continental slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ye K, Cong B, Ye D. The possible subduction of continental material to depths greater than 200 km. Nature, 2000, 407: 734–736

    Article  Google Scholar 

  2. Liu F L, Gerdes A, Liou J G, et al. SHRIMP U-Pb zircon dating from Sulu-Dabie dolomitic marble, eastern China: constrains on prograde, ultrahigh-pressure and retrograde metamorphic ages. J Metamorph Geol, 2006, 24: 569–589

    Google Scholar 

  3. Liu F L, Gerdes A, Zeng L S, et al. SHRIMP U-Pb dating, trace element and Lu-Hf isotope system of coesite-bearing zircon from amphibolite in SW Sulu UHP terrane, eastern China. Geochim Cosmochim Acta, 2008, 72: 2973–3000

    Article  Google Scholar 

  4. Zheng Y F. A perspective view on ultrahigh-pressure metamorphism and continental collision in the Dabie-Sulu orogenic belt. Chinese Sci Bull, 2008, 53(20): 3081–3104

    Article  Google Scholar 

  5. Xu Z Q, Zeng L S, Liu F L, et al. Polyphase subduction and exhumation of the Sulu high-pressureultrahigh-pressure metamorphic terrane. Geol Soc Am (Special Paper), 2006, 403: 93–113

    Google Scholar 

  6. Ernst W G. Preservation/exhumation of ultrahigh-pressure subduction complexes. Lithos, 2006, 92: 321–335

    Article  Google Scholar 

  7. Zeng L S, Chen J, Chen Z Y, et al. Emplacement depth of the Shidao granitic complex and the rapid exhumation of the Sulu ultrahigh pressure rocks: New constraints on the mechanisms for rapid exhumation. Acta Petrol Sin, 2007, 23: 3171–3179

    Google Scholar 

  8. Zheng Y F, Fu B, Gong B, et al. Stable isotope geochemistry of ultrahigh pressure metamorphic rocks from the Dabie-Sulu orogen in China: implications for geodynamics and fluid regime. Earth-Sci Rev, 2003, 62: 105–161

    Article  Google Scholar 

  9. Zheng Y F. Fluid activity during exhumation of deep-subducted continental plate. Chinese Sci Bull, 2004, 49: 985–998

    Article  Google Scholar 

  10. Zheng Y F, Gong B, Li Y, et al. Carbon concentrations and isotopic ratios of eclogites from the Dabie and Sulu terranes in China. Chem Geol, 2000, 168: 291–305

    Article  Google Scholar 

  11. Zeng, L S, Liu F L, Liang F H, et al. Barite in omphacite-hosted K-feldspar + quartz polycrystalline aggregates from the Sulu eclogites and its implications. Chinese Sci Bull, 2007, 52: 2995–3001

    Article  Google Scholar 

  12. Hwang SL, Shen P, Chu HT, et al. Genesis of microdiamonds from melt and associated multiphase inclusions in garnet of ultrahighpressure gneiss from Erzgebirge, Germany. Earth Planet Sci Lett, 2001, 188: 9–15

    Article  Google Scholar 

  13. Ferrando S, Frezzotti, M L, Dallai L, et al. Multiphase solid inclusions in UHP rocks (Su-Lu, China): remnants of supercritical silicate-rich aqueous fluids released during continental subduction. Chem Geol, 2005, 223: 68–81

    Article  Google Scholar 

  14. Liu F L, Xu, Z Q. Fluid inclusions hidden in coesite-bearing zircons in ultrahigh-pressure metamorphic rocks from southwestern Sulu terrane in eastern China. Chinese Sci Bull, 2004, 49: 396–404

    Google Scholar 

  15. Navon O, Hutcheon I D, Rossman G R, et al. Mantle-derived fluids in diamond micro-inclusions. Nature, 1988, 335: 784–789

    Article  Google Scholar 

  16. Korsakov A V, Hermann J. Silicate and carbonate melt inclusions associated with diamonds in deeply subducted carbonate rocks. Earth Planet Sci Lett, 2006, 241: 104–118

    Article  Google Scholar 

  17. Stokhert B, Duyster J, Trepman C, et al. Microdiamond daughter crystals precipitated from supercritical COH + silicate fluids induced in garnet, Erzgebirge, Germany. Geology, 2001, 29: 391–394

    Article  Google Scholar 

  18. Kessel R, Schmidt M W, Ulmer P, et al. Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth. Nature, 2005, 437: 724–727

    Article  Google Scholar 

  19. Kessel R, Ulmer P, Pettke T, et al. The water.basalt system at 4 to 6 GPa: Phase relations and second critical endpoint in a K-free eclogite at 700 to 1400°C. Earth Planet Sci Lett, 2005, 237: 873–892

    Article  Google Scholar 

  20. Hermann J, Spandler C, Hack A, et al. Aqueous fluids and hydrous melts in high-pressure and ultra-high pressure rocks: implications for element transfer in subduction zones. Lithos, 2006, 92: 399–417

    Article  Google Scholar 

  21. Huang W L, Wyllie P J. Phase relationships of S-type granite with H2O to 35 kbar: muscovite granite from Harney Peak, South Dakota. J Geophys Res, 1981, 86: 10515–10529

    Article  Google Scholar 

  22. Nichols G T, Wyllie P J, Stern C R. Subduction zone melting of pelagic sediments constrained by melting experiments. Nature, 1994, 371: 785–788

    Article  Google Scholar 

  23. Patino Douce A E, McCarthy T C. Melting of crustal rocks during continental collision and subduction. In: Hacker B R, Liou J G, eds. When Continents Collide: Geodynamics and Geochemistry of Ultrahigh-Pressure Rocks. Dordrecht: Kluwer Academic Publication, 1998. 27–55

    Google Scholar 

  24. Schmidt M W. Experiment constraints on recycling of potassium from subducted oceanic crust. Science, 1996, 272: 1927–1930

    Article  Google Scholar 

  25. Holloway J R, Domanik K J. Experimental synthesis and phase relations of phengitic muscovite from 6.5 to 11 GPa in a calcareous metapelite from the Dabie Mountains, China. Lithos, 2000, 52: 51–77

    Article  Google Scholar 

  26. Hermann J, Green D H. Experimental constraints on high pressure melting in subducted crust. Earth Planet Sci Lett, 2001, 188: 149–168

    Article  Google Scholar 

  27. Hermann J. Experimental constraints on phase relations in dubducted continental crust. Contrib Mineral Petrol, 2002, 143: 219–235

    Article  Google Scholar 

  28. Schmidt M W, Vielzeuf D, Auzanneau E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet Sci Lett, 2004, 228: 65–84

    Article  Google Scholar 

  29. Auzanneau E, Vielzeuf D, Schmidt M W. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib Mineral Petrol, 2006, 152: 125–148

    Article  Google Scholar 

  30. Hermann J, Spandler C J. Sediment melts at sub-arc depths: an experimental study. J Petrol, 2008, 49: 717–740

    Article  Google Scholar 

  31. Carswell D A, Zhang R Y. Petrographic characteristics and metamorphic evolution of ultrahigh-pressure eclogites in plate-collision belts. Int Geol Rev, 1999, 41: 781–798

    Article  Google Scholar 

  32. Yao Y P, Ye K, Liu J B, et al. A transitional eclogite- to high pressure granulite-facies overprint on coesite-eclogite at Taohang in the Sulu ultrahigh-pressure terrane, Eastern China. Lithos, 2000, 52: 109–120

    Article  Google Scholar 

  33. Zong KQ, Liu YS, Liu XM, et al. Trace elemental records of short-lived heating during exhumation of the CCSD eclogites. Chinese Sci Bull, 2007, 52: 813–824

    Article  Google Scholar 

  34. Zhao Z F, Zheng Y F, Chen R X, et al. Element mobility in mafic and felsic ultrahigh-pressure metamorphic rocks during continental collision. Geochim Cosmochim Acta, 2007, 71: 5244–5266

    Article  Google Scholar 

  35. Wallis S, Tsuboi M, Suzuki K, et al. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 2005, 33: 129–132

    Article  Google Scholar 

  36. Xia Q X, Zheng Y F, Zhou L G. Dehydration and melting during continental collision: constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chem Geol, 2008, 247: 36–65

    Article  Google Scholar 

  37. Chen J F, Xie Z, Li H M, et al. U-Pb zircon ages for a collisionrelated K-rich complex at Shidao in the Sulu ultrahigh pressure terrane, China. Geochem J, 2003, 37: 35–46

    Google Scholar 

  38. Xu S T, Liu Y C, Chen G B, et al. New finding of microdiamonds in eclogites from Dabie-Sulu region in central-eastern China. Chinese Sci Bull, 2003, 48: 988–994

    Article  Google Scholar 

  39. Liu Y C, Li S G. Detachment within subducted continental crust and multi-slice successive exhumation of ultrahigh-pressure metamorphic rocks: Evidence from the Dabie-Sulu orogenic belt. Chinese Sci Bull, 2008, 53: 3105–3119

    Article  Google Scholar 

  40. Liang F H, Zeng L S, Chen J, et al. Discovery of apatite with copper-bearing pyrrhotite exsolution in an eclogite from Rongcheng, eastern Shandong province. Acta Petrol Sin, 2006, 22: 433–438

    Google Scholar 

  41. Zeng L S, Zhang Z M, Liu F L, et al. V/Sc as a new tool to fingerprint the magmatic differentiation processes in the formation of the protoliths for the CCSD eclogites. Acta Petrol Sin, 2006, 22: 2051–2059

    Google Scholar 

  42. Zheng Y F, Wu Y B, Chen F K, et al. Zircon U-Pb and oxygen isotope evidence for a large-scale 18O depletion event in igneous rocks during the Neoproterozoic. Geochim Cosmochim Acta, 2004, 68: 4145–4165

    Article  Google Scholar 

  43. Hacker B R, Wallis S R, Ratschbacher L, et al. High-temperature geochronology constraints on the tectonic history and architecture of the ultrahigh-pressure Dabie-Sulu Orogen. Tectonics, 2006, 25: TC5006, doi:10.1029/2005TC001937

    Article  Google Scholar 

  44. Liu D Y, Jian P, Kroner A, et al. Dating of prograde metamorphic events deciphered from episodic zircon growth in rocks of the Dabie-Sulu UHP complex, China. Earth Planet Sci Lett, 2006, 250: 650–666

    Article  Google Scholar 

  45. Liou J G, Zhang R Y, Ernst W G, et al. High pressure minerals from deeply subducted metamorphic rocks. In: Ribbe P L, ed. Ultrahigh-pressure mineralogy, physics and chemistry of the earth’s deep interior. Rev Mineral, 1998, 37: 33–138

    Google Scholar 

  46. Zhang Z M, Xiao Y L, Hoefs J, et al. UHP metamorphic rocks from the Chinese Continental Scientific Drilling project: I. Petrology and geochemistry of the main hole (0-2050 m). Contrib Mineral Petrol, 2006, 152: 421–441

    Google Scholar 

  47. Wang Q, Ishiwatari A, Zhao Z, et al. Coesite-bearing granulite retrograded from eclogite in Weihai, eastern China. Eur J Mineral, 1993, 5: 141–152

    Google Scholar 

  48. Zhang R Y, Liou J G, Ernst W G. Ultrahigh-pressure metamorphism and decompressional P-T paths of eclogites and country rocks from Weihai, eastern China. The Island Arc, 1995, 4: 293–309

    Article  Google Scholar 

  49. Yang T N, Zeng L S, Liou J G. Mineral evolution of a garnetpyroxenite nodule within eclogite, eastern Sulu ultrahigh-pressure metamorphic terrane, East China. J Metamorph Geol, 2005, 23: 667–680

    Article  Google Scholar 

  50. Nakamura D, Hirajima T. Granulite-facies overprinting of ultrahigh pressure metamorphic rocks, northeastern Su-Lu region, eastern China. J Petrol, 2000, 41: 563–582

    Article  Google Scholar 

  51. Banno S, Enami M, Hirajima T, et al. Decompression pressuretemperature path of coesite eclogite to granulite from Weihai, eastern China. Lithos, 2000, 52: 97–108

    Article  Google Scholar 

  52. Yoshida D, Hirajima T, Ishiwatari A. Pressure-Temperature Path Recorded in the Yangkou Garnet Peridotite, in Su-Lu Ultrahighpressure Metamorphic Belt, Eastern China. J Petrol, 2004, 45: 1125–1145

    Article  Google Scholar 

  53. Zeng L S, Chen J, Liang F H, et al. Widespread occurrences of apatites with high density sulfide mineral solid exsolutions in the Sulu eclogites. Geochim Cosmochim Acta, 2006, 70: A733, doi: 10.1016/j.gca.2006.06.1318

    Article  Google Scholar 

  54. Tsuruta K, Takahashi E. Melting study of an alkali basalt JB-1 up to 12.5 GPa: behavior of potassium in the deep mantle. Phys Earth Planet Inter, 1998, 107: 119–130

    Article  Google Scholar 

  55. Enami M, Zang Q. Quartz pseudomorph after coesite in eclogites from Shangdong Province, east China. Am Mineral, 1990, 75: 381–386

    Google Scholar 

  56. Yang J, Godard G, Smith D C. K-feldpar-bearing coesites pseudomorphs in an eclogite from Lanshantou (Eastern China). Eur J Mineral, 1998, 10: 969–985

    Google Scholar 

  57. Liang F H, Zeng L S, Xu Z Q. Inclusion of K-feldspar-quartz aggregate in omphacite from eclogites from the Chinese Continental Scientific Drilling (CCSD) main borehole: A potassic melt inclusion that experienced UHP metamorphism? Eos, Trans. AGU, 2006, 87, Fall Meet. Suppl., Abstract V31A-0556

  58. Song S G, Yang J S, Xu Z Q, et al. Metamorphic evolution of the coesite-bearing ultrahigh-pressure terrane in the North Qaidam, Northern Tibet, N W China. J Metamorph Geol, 2003, 21: 631–644

    Article  Google Scholar 

  59. Massonne H J, Nasdala L. Characterization of an early metamorphic stage through inclusions in zircon of a diamondiferous Quartzofeldspathic rock from the Erzgebirge, Germany. Am Mineral, 2003, 88: 883–889

    Google Scholar 

  60. Zhang R Y, Liou J G, Iizuka Y, et al. First record of K-cymrite in North Qaidam UHP eclogite, Western China. Am Mineral, 2009, 94: 222–228

    Article  Google Scholar 

  61. Yang J J, Powell R. Calculated Phase Relations in the System Na2OCaO-K2O-FeO-MgO-Al2O3-SiO2-H2O with Applications to UHP Eclogites and Whiteschists. J Petrol, 2006, 47: 2047–2071

    Article  Google Scholar 

  62. Perchuk L L, Safonov O G, Yapaskurt V O, et al. Crystal-melt equilibria involving potassium-bearing clinopyroxene as indicator of mantle-derived ultrahigh-potassic liquids: an analytical review. Lithos, 2002, 60: 89–111

    Article  Google Scholar 

  63. Darling R S, Chou I M, Bodnar R J. An occurrence of metastable cristobalite in high-pressure garnet granulite. Science, 1997, 276: 91–93

    Article  Google Scholar 

  64. Ducea M N, Lutkov V, Minaev V T, et al. Building the Pamirs: The view from the underside. Geology, 2003, 31: 849–852

    Article  Google Scholar 

  65. Hacker B R, Luffi P, Lutkov V, et al. Near-ultrahigh pressure processing of continental crust: Miocene crustal xenoliths from the Pamir. J Petrol, 2005, 46: 1661–1687

    Article  Google Scholar 

  66. Fu B, Touret J L R, Zheng Y-F. Fluid inclusions in coesite-bearing eclogites and jadeite quartzite at Shuanghe, Dabie Shan, China. J Metamorph Geol, 2001, 19: 529–545

    Article  Google Scholar 

  67. Xia Q-K, Sheng Y-M, Yang X-Z, et al. Heterogeneity of water in garnets from UHP eclogites, eastern Dabieshan. China. Chem Geol, 2005, 224: 237–246

    Article  Google Scholar 

  68. Zhang Z M, Shen K, Sun W D, et al. Fluids in deeply subducted continental crust: petrology, mineral chemistry and fluid inclusion of UHP metamorphic veins from the Sulu orogen, eastern China. Geochim Cosmochim Acta, 2008, 72: 3200–3228

    Article  Google Scholar 

  69. Su W, You Z D, Cong B L, et al. Cluster of water molecules in garnet from ultrahigh-pressure eclogite. Geology, 2002, 30: 611–614

    Article  Google Scholar 

  70. Gong B, Zheng Y F, Chen R-X. TC/EA-MS online determination of hydrogen isotope composition and water concentration in eclogitic garnet. Phys Chem Minerals, 2007, 34: 687–698

    Article  Google Scholar 

  71. Hwang S L, Shenm P, Chu H T, et al. Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contrib Mineral Petrol, 2004, 148: 380–389

    Article  Google Scholar 

  72. Johannes W, Holtz F. Petrogenesis and Experimental Petrology of Granitic Rocks. Berlin, Heidelberg, New York: Springer, 1996. 335

    Google Scholar 

  73. Luth W C. The system NaAlSi3O8-SiO2 and KAlSi3O8-SiO2 to 20 kbar and the relationship between H2O content, PH2O, and Ptotal in granitic magmas. Am J Sci, 1976, 267A: 325–341

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LingSen Zeng.

Additional information

Supported by National Natural Science Foundation of China (Grant No. 40673027), the Outlay Research Fund of Chinese Academy of Geological Sciences (Grant No.20071120101125)

About this article

Cite this article

Zeng, L., Liang, F., Asimow, P. et al. Partial melting of deeply subducted continental crust and the formation of quartzofeldspathic polyphase inclusions in the Sulu UHP eclogites. Chin. Sci. Bull. 54, 2580–2594 (2009). https://doi.org/10.1007/s11434-009-0426-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0426-6

Keywords

Navigation