Skip to main content
Log in

Delamination and destruction of the North China Craton

  • Review/Geochemistry
  • Published:
Chinese Science Bulletin

Abstract

This article presents an overview on recent developments in studies of chemical and physical processes of lithospheric delamination with respect to destruction of the North China Craton. It is emphasized that the pyroxenite source resulting from interaction between eclogite-derived melt and peridotite is a direct consequence of delamination. The pyroxenite source thus formed has unique mineralogical and geochemical features, which characterize Mesozoic basalts of the North China Craton. Melt-peridotite interaction played an important role in refertilization of cratonic lithospheric mantle, leading to density increase, weakening and final destabilization of the North China Craton. The nature of the melt is the key to distinguish mechanisms of destructing this craton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wilde S A, Valley J W, Peck W H, et al. Evidence from detrital zircons for the existence of continental crust and oceans on the earth 4.4 Gyr ago. Nature, 2001, 409: 175–178

    Article  Google Scholar 

  2. Boyd F R, Gurney J J, Richardson S H. Evidence for a 150–200 km thick Archaean lithosphere from diamond inclusion thermobarometry. Nature, 1985, 315: 387–389

    Article  Google Scholar 

  3. Pollack H N. Cratonization and thermal evolution of the mantle. Earth Planet Sci Lett, 1986, 80: 175–182

    Article  Google Scholar 

  4. Sleep N H. Survival of Archean cratonal lithosphere. J Geophys Res, 2003, 108: doi:10.1029/2001JB000169

  5. Sleep N H. Evolution of the continental lithosphere. Annu Rev Earth Planet Sci, 2005, 33: 369–393

    Article  Google Scholar 

  6. Carlson R W, Pearson D G, James D E. Physical, chemical, and chronological characteristics of continental mantle. Rev Geophys, 2005, 43: doi: 10.1029/2004RG000156

  7. King S D. Archean cratons and mantle dynamics. Earth Planet Sci Lett, 2005, 234: 1–14

    Article  Google Scholar 

  8. Griffin W L, O’Reilly S Y, Afonso J C, et al. The Composition and evolution of lithospheric mantle: a re-evaluation and its tectonic implications. J Petrol, 2008, doi 10.1093/petrology/egn033

  9. Foley S F. Rejuvenation and erosion of the cratonic lithosphere. Nat Geosci, 2008, 1: 503–510

    Article  Google Scholar 

  10. Fan W M, Menzies M A. Destruction of aged lower lithosphere and accretiob of asthenosphere mantle beneath eastern China. Geotect Metal, 1992, 16: 171–180

    Google Scholar 

  11. Menzies M A, Fan W M, Zhang M, Palaeozoic and Cenozoic lithoprobes and the loss of > 120 km of Archaean lithosphere, Sino-Korean craton, China. In: Prichard H M, Alabaster T, Harris N B W, et al. Magmatic Processes and Plate Tectonics. Geological Society Special Publication, 1993, 76: 71–78

  12. Deng J F, Mo X X, Zhao H L, et al. Root and derooting of Eastern China lithosphere and reactivation of continents: Research project of Eastern Asian continental dynamics. Modern Geol, 1994, 8: 349–355

    Google Scholar 

  13. Menzies M A, Xu Y G. Geodynamics of the North China Craton. In: Flower M F J, Chung S L, Lo C H, et al, eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 1998, 27: 155–165

  14. Menzies M A, Xu Y G, Zhang H F, et al. Integration of geology, geophysics and geochemistry: A key to understanding the North China Craton. Lithos, 2007, 96: 1–21

    Article  Google Scholar 

  15. Griffin W L, Zhang A D, O’Reilly S Y, et al. Phanerozoic evolution of the lithosphere beneath the Sino-Korean Craton. In: Flower M F J, Chung S L, Lo C H, et al., eds. Mantle Dynamics and Plate Interactions in East Asia. Am Geophys Union Geodyn Ser, 1998, 27: 107–126

  16. Zheng J P. Replacement of Mantle in Eastern China and Mesozoic-Cenozoic Lithosphere Thinning. Wuhan: China University of Geosciences Press, 1999

    Google Scholar 

  17. Fan W M, Zhang H F, Baker J, et al. On and off the north China craton: Where is the Archaean keel? J Petrol, 2000, 41: 933–950

    Article  Google Scholar 

  18. Xu Y G. Thermo-tectonic destruction of the Archean lithospheric keel beneath the Sino-Korean Craton in China: Evidence, Timing and Mechanism. Phys Chem Earth (A), 2001, 26: 747–757

    Article  Google Scholar 

  19. Liu Y S, Gao S, Lee C-T A, et al. Melt-peridotite interactions: Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth Planet Sci Lett, 2005, 234: 39–57

    Article  Google Scholar 

  20. Zheng J P, Griffin W L, O’Reilly S Y, et al. Late Mesozoic-Eocene mantle replacement beneath the eastern North China Craton: Evidence from the Paleozoic and Cenozoic peridotite xenoliths. Inter Geol Rev, 2005, 47: 457–472

    Article  Google Scholar 

  21. Zheng J P, Sun M, Zhou M F, et al. Trace elemental and PGE geochemical constraints of Mesozoic and Cenozoic peridotitic xenoliths on lithospheric evolution of the North China Craton. Geochim Cosmochim Acta, 2005, 69: 3401–3418

    Article  Google Scholar 

  22. Zheng J P, Griffin W L, O’Reilly S Y. Mineral chemistry of garnet peridotites from Paleozoic, Mesozoic and Cenozoic lithosphere: Constraints on mantle evolution beneath eastern China. J Petrol, 2006, 47: 2233–2256

    Article  Google Scholar 

  23. Gao S, Rudnick R L, Carlson R W, et al. Re-Os evidence for replacement of ancient mantle lithosphere beneath the North China craton. Earth Planet Sci Lett, 2002, 198: 307–322

    Article  Google Scholar 

  24. Gao S, Rudnick R L, Yuan H L, et al. Recycling lower continental crust in the North China craton. Nature, 2004, 432: 892–897

    Article  Google Scholar 

  25. Wu F Y, Walker R J, Ren X W, et al. Osmium isotopic constraints on the age of lithospheric mantle beneath northeastern China. Chem Geol, 2003, 196: 107–129

    Article  Google Scholar 

  26. Wu F Y, Lin J Q, Wilde S A, et al. Nature and significance of the Early Cretaceous giant igneous event in eastern China. Earth Planet Sci Lett, 2005, 233: 103–119

    Article  Google Scholar 

  27. Zhang H F. Transformation of lithospheric mantle through peridotite-melt reaction: A case of Sino-Korean craton. Earth Planet Sci Lett, 2005, 237: 768–780

    Article  Google Scholar 

  28. Wu F Y, Walker R J, Yang Y H, et al. The chemical-temporal evolution of lithospheric mantle underlying the North China Craton. Geochim Cosmochim Acta, 2006, 70: 5013–5034

    Article  Google Scholar 

  29. Deng J F, Su S G, Niu Y L, et al. A possible model for the lithospheric thinning of North China Craton: Evidence from the Yanshanian (Jura-Cretaceous) magmatism and tectonism. Lithos, 2007, 96: 22–35

    Article  Google Scholar 

  30. Lu F X, Zheng J P, Zhang R S, et al. Phanerozoic mantle evolution in eastern North China Craton (in Chinese). Earth Sci Front, 2005, 12: 61–67

    Google Scholar 

  31. Zhai M G, Fan Q C, Zhang H F, et al. Lower crustal processes in the lithospheric thining: magma underplating, replacement and delamination. Acta Petrol Sin, 2005, 21: 1509–1526

    Google Scholar 

  32. Zhou X H. Some problems on Mesozoic-Cenozoic transformation and thining (in Chinese). Earth Sci Front, 2006, 13: 50–54

    Google Scholar 

  33. Zhai M G, Fan Q C, Zhang H F, et al. Lower crustal processes leading to Mesozoic lithospheric thinning beneath eastern North China: Underplating, replacement and delamination. Lithos, 2007, 96: 36–54

    Article  Google Scholar 

  34. Gao S, Rudnick R L, Xu W L, et al. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China craton. Earth Planet Sci Lett, 2008, 270: 41–53

    Article  Google Scholar 

  35. Yang J H, Wu F Y, Wilde S A, et al. Mesozoic decratonization of the North China block. Geology, 2008, 36: 467–470

    Article  Google Scholar 

  36. Liu D Y, Nutman A P, Compston W, et al. Remnants of 3800 Ma crust in the Chinese part of the Sino-Korean craton. Geology, 1992, 20: 339–342

    Article  Google Scholar 

  37. Zheng J P, Griffin W L, O’Reilly S Y, et al. 3.6 Ga lower crust in central China: New evidence on the assembly of the North China Craton. Geology, 2005, 32: 229–232

    Article  Google Scholar 

  38. Chen G D. Examples of reactivation of Chinese plateforms and discussion on Cathysian Oldland. Geol Acta, 1956, 36: 239–272

    Google Scholar 

  39. Chen G D. Diwa Hypophysis, Reactivation Tectonics and Concept of Ore-forming Theoretical System. Changshai: Press of South China Industry University, 1996. 1–455

    Google Scholar 

  40. Zhang H F, Sun M, Zhou X H, et al. Mesozoic lithosphere destruction beneath the North China Craton: Evidence from major, trace element, and Sr-Nd-Pb isotope studies of Fangcheng basalts. Contrib Mineral Petrol, 2002, 144: 241–253

    Article  Google Scholar 

  41. Zhang H F, Sun M, Zhou X H, et al. Secular evolution of the lithosphere beneath the eastern North China Craton: Evidence from Mesozoic basalts and high-Mg andesites. Geochim Cosmochim Acta, 2003, 67: 4373–4387

    Article  Google Scholar 

  42. Xu W L, Gao S, Wang Q H, et al. Mesozoic crustal thickening of the eastern North China Craton: Evidence from eclogite xenoliths and petrologic implications. Geology, 2006, 34: 721–724

    Article  Google Scholar 

  43. Xu W L, Hergt J M, Gao S, et al. Interaction of adakitic melt-peridotite: Implications for the high-Mg# signature of Mesozoic adakitic rocks in the eastern North China Craton. Earth Planet Sci Lett, 2008, 265: 123–137

    Article  Google Scholar 

  44. Yang J H, Wu F Y, Wilde S A. A review of the geodynamic setting of large-scale Late Mesozoic gold mineralization in the North China craton: An association with lithospheric thinning. Ore Geol Rev, 2003, 23: 125–152

    Article  Google Scholar 

  45. Rudnick R L, Gao S, Ling W L, et al. Petrology and geochemistry of spinel peridotite xenoliths from Hannuoba and Qixia, North China Craton. Lithos, 2004, 77: 609–637

    Article  Google Scholar 

  46. Tang Y J, Zhang H F, Ying J F. Asthenosphere-lithospheric mantle interaction in an extensional regime: Implication from the geochemistry of Cenozoic basalts from Taihang Mountains, North China Craton. Chem Geol, 2006, 233: 309–327.

    Article  Google Scholar 

  47. Xu Y G. Diachronous lithospheric thing of the North China Craton and formation of the Daxin’anling-Taihangshan gravity lineament. Lithos, 2007, 76: 281–298

    Article  Google Scholar 

  48. Yuan X C. Seismic structure of Qingling lithosphere and mushroomlike tectonic model. Sci. China Ser D-Earth Sci, 1996, 26: 209–215

    Google Scholar 

  49. Chen L, Zheng T Y, Xu W W. A thinned lithospheric image of the Tanlu Fault Zone, eastern China: constructed from wave equation based receiver function migration. J Geophys Res, 2006, 111: doi:10.1029/2005JB003974

  50. Taylor S R, McLennan S M. The Continental Crust: Its Composition and Evolution. Oxford: Blackwell Scientific Publication, 1985

    Google Scholar 

  51. Hawkesworth C J, Kemp A I S. Evolution of the continental crust. Nature, 2006, 443: 811–817

    Article  Google Scholar 

  52. Hawkesworth C J, Kemp A I S. Using hafnium and oxygen isotopes in zircons to unravel the record of crustal evolution. Chem Geol, 2006, 226: 144–162

    Article  Google Scholar 

  53. Rudnick R L, Fountain D M. Nature and composition of the continental crust: A lower crustal perspective. Rev Geophys, 1995, 33: 267–309

    Article  Google Scholar 

  54. Moser D E, Flowers R M, Hart R J. Birth of the Kaapvaal tectosphere 3.08 billion years ago. Science, 2001, 291: 465–468

    Article  Google Scholar 

  55. Niu Y L. Generation and evolution of basaltic magmas: Some basic concepts and a new view on the origin of Mesozoic-Cenozoic basaltic volcanism in Eastern China. Geol J China Univ, 2005. 11: 9–46

    Google Scholar 

  56. Seber D, Barazangi M, Ibenbrahim A, et al. Geophysical evidence for lithospheric delamination beneath the Alboran Sea and Rif-Betic Mountains. Nature, 1996, 379: 785–790

    Article  Google Scholar 

  57. Calvert A, Sandvol E, Seber D, et al. Geodynamic evolution of the lithosphere and upper mantle beneath the Alboran region of the western Mediterranean: Constraints from travel time tomography. J Geophys Res, 2000, 105(B): 10871–10898

    Article  Google Scholar 

  58. Boyd O S, Jones C H, Sheehan A F. Foundering lithosphere imaged beneath the Southern Sierra Nevada, California, USA. Science, 2004, 305: 660–662

    Article  Google Scholar 

  59. Wu F Y, Xu Y G, Gao S, et al. Lithospheric thinning and destruction of the Nlorth China Craton. Acta Petrol Sin, 2008, 24: 1145–1174

    Google Scholar 

  60. Gao S, Jin Z M. Delamination and its geodynamic significance in crust-mantle evolution. Geol Tech Inf, 1997, 16: 1–9

    Google Scholar 

  61. Sobolev A V, Hofmann A W, Sobolev S V, et al. An olivine-free mantle source of Hawaiian shield basalts. Nature, 2005, 434: 590–597

    Article  Google Scholar 

  62. Sobolev A V, Hofmann A W, Kuzmin D V, et al. The amount of recycled crust in sources of mantle-derived melts. Science, 2007, 316: 412–417

    Article  Google Scholar 

  63. Arndt N T, Goldstein S L. An open boundary between lower continental crust and mantle: its role in crust formation and crustal recycling. Tectonophysics, 1989, 161: 201–212

    Article  Google Scholar 

  64. Kay R W, Kay S M. Creation and destruction of lower continental crust. Geol Rundschau, 1991, 80: 259–278

    Article  Google Scholar 

  65. Rudnick R L. Making continental crust. Nature, 1995, 378: 571–577

    Article  Google Scholar 

  66. Jull M, Kelemen P B. On the conditions for lower crustal convective instability. J Geophys Res, 2001, 106: 6423–6446

    Article  Google Scholar 

  67. Escrig S, Capmas F, Dupre B, et al. Osmium isotopic constraints on the nature of the DUPAL anomaly from Indian mid-ocean-ridge basalts. Nature, 2004, 431: 59–63

    Article  Google Scholar 

  68. Elkins-Tanton L T. Continental magmatism caused by lithospheric delamination. In: Foulger G R, Natland J H, Presnall D C, et al., eds. Plates, Plumes, and Paradigms. Geol Soc Am Spec Pap, 2005, 388: 449–462

  69. Lustrino M. How the delamination and detachment of lower crust can influence basaltic magmatism. Earth Sci Rev, 2005, 72: 21–38

    Article  Google Scholar 

  70. Anderson D A. Large igneous provinces, delamination, and fertile mantle. Elements, 2006, 1: 271–275

    Article  Google Scholar 

  71. Anderson D A. Speculations on the nature and cause of mantle heterogeneity. Tectonophysics, 2006, 146: 7–22

    Article  Google Scholar 

  72. Bedard J H. A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta, 2006, 70: 1188–1214

    Article  Google Scholar 

  73. Rudnick R L, Fountain D M. Nature and composition of the continental crust: a lower crustal perspective. Rev Geophys, 1995, 33: 267–309

    Article  Google Scholar 

  74. Yaxley G M, Green D H. Reactions between eclogite and peridotite: mantle refertilisation by subduction of oceanic crust. Schweiz Mineral Petrogr Mitt, 1998, 78: 243–255

    Google Scholar 

  75. Rapp R P, Shimizu N, Norman M D, et al. Reaction between slab-derived melts and peridotite in the mantle wedge: experimental constraints at 3.8 GPa. Chem Geol, 1999, 160: 335–356

    Article  Google Scholar 

  76. Yaxley G M. Experimental study of the phase and melting relations of homogeneous basalt plus peridotite mixtures and implications for the petrogenesis of flood basalts. Contrib Mineral Petrol, 2000, 139: 326–338

    Article  Google Scholar 

  77. Kogiso T, Hirschmann M M. Experimental study of clinopyroxenite partial melting and the origin of ultra-calcic melt inclusions. Contrib Mineral Petrol, 2001, 142: 347–360

    Article  Google Scholar 

  78. Kogiso T, Hirschmann M M, Frost D J. High-pressure partial melting of garnet pyroxenite: possible mafic lithologies in the source of ocean island basalts. Earth Planet Sci Lett, 2003, 216: 603–617

    Article  Google Scholar 

  79. Herzberg C. Petrology and thermal structure of the Hawaiian plume from Mauna Kea volcano. Nature, 2006, 444: 605–609

    Article  Google Scholar 

  80. McKenzie D, O’Nions R K. Mantle reserviors and oceanic basalts. Nature, 1983, 301: 229–231

    Article  Google Scholar 

  81. Liu Y S, Gao S, Kelemen P B, et al. Recycled lower continental crust controls contrasting source compositions of Mesozoic and Cenozoic basalts in Eastern China. Geochim Cosmochim Acta, 2008, 72: 2349–2376

    Article  Google Scholar 

  82. Gao S, Zhang B R, Luo T C, et al. Chemical composition of the continental crust in the Qinling Orogenic Belt and its adjacent North China and Yangtze Cratons. Geochim Cosmochim Acta, 1992, 56: 3933–3950

    Article  Google Scholar 

  83. Gao S, Zhang B R, Jin Z M, et al. How mafic is the lower continental crust?. Earth Planet Sci Lett, 1998, 161: 101–117

    Article  Google Scholar 

  84. Gao S, Luo T C, Zhang B R, et al. Chemical composition of the continental crust as revealed by studies in East China. Geochim Cosmochim Acta, 1998, 62: 1959–1975

    Article  Google Scholar 

  85. Rapp R P, Watson E B. Dehydration melting of metabasalt at 8-32 kbar; implications for continental growth and crust-mantle recycling. J Petrol, 1995, 36: 891–931

    Article  Google Scholar 

  86. Wedepohl K H. The composition of the continental crust. Geochim Cosmochim Acta, 1995, 59: 1217–1232

    Article  Google Scholar 

  87. Kelemen P B, Hangho J K. One view of the geochemistry of subduction-related magmatic arcs, with an emphasis on primitive andesite and lower Crust. In: Rudnick R L, eds. Treatise in Geochemistry: The crust, 2003, 3: 593–659

  88. Rudnick R L, Gao S. Composition of the Continental Crust. In: Rudnick R L, eds. Treatise in Geochemistry: The crust, 2003, 3: 1–64

  89. Rapp R P, Watson E B, Miller C F. Partial melting of amphibolite/eclogite and the origin of Archean trondhjemites and tonalites. Precambrian Res, 1991, 51: 1–25

    Article  Google Scholar 

  90. Barth M G, Foley S F, Horn I. Partial melting in Archean subduction zones: constraints from experimentally determined trace element partition coefficients between eclogitic minerals and tonalitic melts under upper mantle conditions. Precambrian Res, 2002, 113: 323–340

    Article  Google Scholar 

  91. Rapp R P, Shimizu N, Norman M D. Growth of early continental crust by partial melting of eclogite. Nature, 2003, 425: 605–609

    Article  Google Scholar 

  92. Martin H, Smithies R H, Rapp R, et al. An overview of adakite, tonalite-trondhjemite-granodiorite (TTG), and sanukitoid: relationships and some implications for crustal evolution. Lithos, 2005, 79: 1–24

    Article  Google Scholar 

  93. Xiong X L. Trace element evidence for growth of early continental crust by melting of rutile-bearing hydrous eclogite. Geology, 2006, 34: 945–948

    Article  Google Scholar 

  94. Kamenetsky V S, Maas R, Sushchevskaya N M, et al. Remnants of Gondwanan continental lithosphere in oceanic upper mantle: Evidence from the South Atlantic Ridge. Geology, 2001, 29: 243–246

    Article  Google Scholar 

  95. Kay R W. Aleutian magnesian andesites melts from subducted Pacific ocean crust. J Volcanol Geotherm Res, 1978, 4: 117–132

    Article  Google Scholar 

  96. Stern R A, Hanson G N. Archean high-Mg granodiorite: a derivative of light rare earth element-enriched monzodiorite of mantle origin. J Petrol, 1991, 32: 201–238

    Article  Google Scholar 

  97. Atherton M P, Petford N. Generation of sodium-rich magmas from newly underplated basaltic crust. Nature, 1993, 362: 144–146

    Article  Google Scholar 

  98. Martin H. Adakitic magmas: modern analogues of Archaean granitoids. Lithos, 1999, 46: 411–429

    Article  Google Scholar 

  99. Xu J F, Shinjo R, Defant M J, et al. Origin of Mesozoic adakitic intrusive rocks in the Ningzhen area of east China: Partial melting of delaminated lower continental crust? Geology, 2002, 30: 1111–1114

    Article  Google Scholar 

  100. Tatsumi Y. Continental crust formation by crustal delamination in subduction zones and complementary accumulation of enriched mantle I component in the mantle. Geochem Geophy Geosys, 2000, No. 2000GC000094

  101. Zhang Q, Jin W J, Wang Y L, et al. A discussion on model of continental lower crust delamination. Acta Petrol Sin, 2006, 22: 265–276

    Google Scholar 

  102. Percival J A, Pysklywe R N. Are Archean lithospheric keels inverted?. Earth Planet Sci Lett, 2007, 254: 393–403

    Article  Google Scholar 

  103. Schott B, Schmeling H. Delamination and detachment of a lithospheric root. Tectonophysics, 1998, 296: 225–247

    Article  Google Scholar 

  104. Morency C, Doin M P, Dumoulin C. Convective destabilization of a thickened continental lithosphere. Earth Planet Sci Lett, 2002, 202: 303–320

    Article  Google Scholar 

  105. Morency C, Doin M P. Numerical simulations of the mantle lithosphere delamination. J Geophys Res, 2004, 109: B03410, doi: 10. 1029/2003JB002414

    Article  Google Scholar 

  106. Djomani Y H P. The density structure of subcontinental lithosphere through time. Earth Planet Sci Lett, 2001, 184: 605–621

    Article  Google Scholar 

  107. Kukkonen I T, Kuusisto M, Lehtonen M, et al. Delamination of eclogitized lower crust: control on the crust-mantle boundary in the central Fennoscandian shield. Tectonophysics, 2008, 457: 111–127

    Article  Google Scholar 

  108. Wang Y, Zhang J, Jin Z, et al. Rehology of mafic granulite at high pressure and temperature: Implications for crust-mantle interactions. Eos Trans Am Geophys Union, 2008 89, Fall Meet. Suppl, abstract# V31C-2153

  109. Kronenberg A K, Tullis J. Flow strengths of quartz aggregates: grain size and pressure effects due to hydrolytic weakening, J Geophys Res, 1984, 89: 4281–4297

    Article  Google Scholar 

  110. Jaoul O, Tullis J, Kronenberg A. The effect of varying water contents on the creep behaviour of Heavitreee Quartzite. J Geophys Res, 1984, 89: 4298–4312

    Article  Google Scholar 

  111. Hanse F D, Carter N L. Creep of selected crustal rocks at 1000 MPa. EOS Trans Am Geophys Union, 1982, 63: 437

    Google Scholar 

  112. Wilks K R, Carter N L. Rheology of some continental lower crustal rocks. Tectonophysics, 1990, 182: 57–77

    Article  Google Scholar 

  113. Zhang J, Green H W. Experimental investigation of eclogite rheology and fabrics at high pressure. J Metamorph Geol, 2007, 25: 97–117

    Article  Google Scholar 

  114. Hirth G, Kohlstedt D. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists. In: Eiler J, ed. Inside the Subduction Factory: Geophysics Monograph Series. American Geophysical Union, Washington D C, 2003, 138: 83–105

    Chapter  Google Scholar 

  115. Zhang J, Wang Y, Jin Z, et al. Viscosity profile of the cratonic lithosphere of Eastern China and its implications for craton reactivation. Eos Trans Am Geophys Union, 2008, 89, Fall Meet. Suppl., abstract# V31C-2154

  116. Jin Z M, Green H W, Zhou Y. Topology in partially molten mantle peridotite during ductile deformation. Nature, 1994, 372: 164–167

    Article  Google Scholar 

  117. Liu Y S, Gao S, Jin S Y, et al. Geochemistry of lower crustal xenoliths from Neogene Hannuoba Basalt, North China Craton: Implications for petrogenesis and lower crustal composition. Geochim Cosmochim Acta, 2001, 65: 2589–2604

    Article  Google Scholar 

  118. Li S, Mooney W D, Fan J. Crustal structure of mainland China from deep seismic sounding data. Tectonophysics, 2006, 420: 239–252

    Article  Google Scholar 

  119. Ji S, Wang Q, Salisbury M H. Composition and tectonic evolution of the Chinese continental crust constrained by Poisson’s ratio. Tectonophysics, 2009, 463: 15–30

    Article  Google Scholar 

  120. Zhang H F, Goldstein S, Zhou X H, et al. Evolution of subcontinental Lithospheric mantle beneath eastern China: Re-Os isotopic evidence from mantle xenoliths in Paleozoic kimberlites and Mesozoic basalts. Contrib Mineral Petrol, 2008, 155: 271–293

    Article  Google Scholar 

  121. Zhang Q, Wang Y, Liu H T, et al. Temporal and spatial distribution and tectonic settings of adakities in China (in Chinese). Earth Sci Front, 2003, 10: 385–400

    Google Scholar 

  122. Yang W, Li S. Geochronology and geochemistry of the Mesozoic volcanic rocks in Western Liaoning: Implications for lithospheric thinning of the North China Craton. Lithos, 2008, 102: 88–117

    Article  Google Scholar 

  123. Huang F, Li S, Yang W. Contributions of the lower crust to Mesozoic mantle derived mafic rocks from the North China Craton: implications for Lithospheric thinning. In: Zhai M G, Windley B F, Kusky T M, et al., eds. Mesozoic Sub-Continental Lithospheric Thinning under Eastern Asian. Geol Soc Lond Spec Pub, 2007, 280: 55–75

  124. Herzberg C, Asimow P D, Arndt N, et al. Temperatures in ambient mantle and plumes: constraints from basalts, picrites, and komatiites. Geochem Geophy Geosys, 2007, 8: Q02006. doi:10.1029/2006GC001390

    Article  Google Scholar 

  125. Zheng S, Hu Z C. Accurate determinations of Ni, Ca and Mn contents in olivine by electron microprobe and laser inductively coupled plasma spectrometry. Earth Sci, 2009, 34: 220–224

    Google Scholar 

  126. Hirose K. Melting experiments on lherzolite KLB-1 under hydrous conditions and generation of high-magnesian andesitic melts. Geology, 1997, 25: 42–44

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Gao.

Additional information

Supported jointly by the National Natural Science Foundation of China (Grant Nos. 90714010, 90714005, 90814003 and 40673019), Ministry of Education and State Administration of Foreign Experts of China (Grant No. B07039) as well as the MOST special funds from State Key Laboratory of Continental Dynamics and State Key Laboratory of Geological Processes and Mineral Resources

About this article

Cite this article

Gao, S., Zhang, J., Xu, W. et al. Delamination and destruction of the North China Craton. Chin. Sci. Bull. 54, 3367–3378 (2009). https://doi.org/10.1007/s11434-009-0395-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0395-9

Keywords

Navigation