Skip to main content
Log in

Locating seismic scatterers at the base of the mantle beneath eastern Tibet with PKIKP precursors

  • Articles
  • Geophysics
  • Published:
Chinese Science Bulletin

Abstract

Clear PKIKP precursors were observed from the Lanzhou CTBTO seismic array. We measured their incident angles, arriving azimuths and differential travel times with respect to the PKIKP arrivals using array analysis techniques. These measurements allowed us to locate the scatterers that generated the observed precursors. We found that the scatterers are located in the lowermost mantle beneath eastern Tibet, which is featured by a high-velocity anomaly based on previous tomographic studies. The high velocity anomaly was interpreted as the slab remnants of the ancient Tethys subduction. We thus speculate that the observed scatterers are either related or induced by the subducted slab.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hedlin M A H, Shearer P M. An analysis of large-scale variations in small-scale mantle heterogeneity using Global Seismographic Network recordings of precursors to PKP. J Geophys Res, 2000, 105: 13655–3673

    Article  Google Scholar 

  2. Gutenberg B, Richter C F. On seismic waves: I. Gerlands Beitr Geophysik. 1934, 43: 56–133

    Google Scholar 

  3. Gutenberg B. The boundary of the Earth’s inner core. Eos Trans AGU, 1957, 38: 750–753

    Google Scholar 

  4. Bullen K E, Burke-Gaffney T N. Diffracted seismic waves near the PKP caustic. Geophys J Int, 1958, 1: 9–17

    Article  Google Scholar 

  5. Bolt B A. Gutenberg’s early PKP observations. Nature, 1962, 196: 122–124

    Article  Google Scholar 

  6. Sacks I S, Saa G. The structure of the transition zone between the inner core and the outer core. Year Book Carnegie Inst Washington, 1969, 69: 419–426

    Google Scholar 

  7. Haddon R A W. Corrugations on the CMB or transition layers between inner and outer cores? (Abstract). Eos Trans AGU, 1972, 53: 600

    Google Scholar 

  8. Cleary J R, Haddon R A W. Seismic wave scattering near the core-mantle boundary: a new interpretation of precursors to PKP. Nature, 1972, 240: 549–551

    Article  Google Scholar 

  9. Doornbos D J, Husebye E S. Array analysis of PKP phases and their precursors. Phys Earth Planet Inter, 1972, 5: 387–399

    Article  Google Scholar 

  10. King D W, Haddon R A W, Cleary J R. Array analysis of precursors to PKIKP, in the distance range 128° to 142°. Geophys J R Astron Soc, 1974, 37: 157–173

    Google Scholar 

  11. Husebye E S, King D W, Haddon R A W. Precursor to PKIKP and seismic wave scattering near the mantle-core boundary. J Geophys Res, 1976, 81: 1870–1882

    Article  Google Scholar 

  12. Doornbos D J. Characteristics of lower mantle inhomogeneities from scattered waves. Geophys J R Astron Soc, 1976, 49: 541–542

    Google Scholar 

  13. Hedlin M A H, Shearer P M, Earle P S. Seismic evidence for small-scale heterogeneity throughout the Earth’s mantle. Nature, 1997, 387: 145–150

    Article  Google Scholar 

  14. Cormier V. Anisotropy of heterogeneity scale lengths in the lower mantle from PKIKP precursors. Geophys J Int, 1999, 136: 373–384

    Article  Google Scholar 

  15. Margerin L, Nolet G. Multiple scattering of high-frequency seismic waves in the deep Earth: PKP precursor analysis and inversion for mantle granularity. J Geophys Res, 2003, 108: 2234, doi: 10.1029/2002JB001974

    Article  Google Scholar 

  16. Wen L. Intense seismic scattering near the Earth’s core-mantle boundary beneath the Comoros hotspot. Geophys Res Lett, 2000, 27: 3627–3630

    Article  Google Scholar 

  17. Niu F, Wen L. Strong seismic scatterers near the core-mantle boundary west of Mexico. Geophys Res Lett, 2001, 28: 3557–3560

    Article  Google Scholar 

  18. Shen Y, Blum J. Seismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa. Geophys Res Lett, 2003, 30: 1925, doi: 10.1029/2003GL017 991

    Article  Google Scholar 

  19. Shen X, Zhou H, Kawakatsu H. Mapping the upper mantle discontinuities beneath China with teleseismic receiver functions. Earth Planets Space, 2008, 60: 713–719

    Google Scholar 

  20. Shen X Z, Zhou H L. The low-velocity layer at the depth of 620 km beneath Northeast China. Chinese Sci Bull, 2009, 54, doi: 10.1007/s11434-008-0559-z

  21. Richards A, Engebretson, D C. Large-scale mantle convection and the history of subduction. Nature, 1992, 355: 437–440

    Article  Google Scholar 

  22. Grand P S. Mantle shear-wave tomography and the fate of subducted slabs. Phil Trans R Soc Lond A, 2001, 360: 2475–2491

    Google Scholar 

  23. van der Hilst R D, Widiyantoro S, Engdahl E R. Evidence for deep mantle circulation from global tomography. Nature, 1997, 386: 578–584

    Article  Google Scholar 

  24. Bijwaard H, Spakman W, Engdahl E R. Closing the gap between regional and global travel time tomography. J Geophys Res, 1998, 103: 30055–30078

    Article  Google Scholar 

  25. Cao A, Romanowicz B. Locating scatterers in the mantle using array analysis of PKIKP precursors from an earthquake doublet. Earth Planet Sci Lett, 2007, 255: 22–31

    Article  Google Scholar 

  26. Hao C Y, Zheng Z, Guo Y P, et al. The calculation of locating ability of China Digital Seismological Network (CDSN) and IMS/PS seismic array. Seismol Geomag Obs Res, 2006, 27: 56–63

    Google Scholar 

  27. Xu J S, Li J, Liu X, et al. The construction of Lanzhou Dajianshan seismic array. Northwestern Seismol J, 2005, 27(Supp): 27–30

    Google Scholar 

  28. Xu J S, Zhao Y Q, Su X Z, et al. The site survey for Dajian Mountain Seismic Array in Lanzhou. Seismol Geomag Obs Res, 2006, 27 (Supp): 51–57

    Google Scholar 

  29. Kennett B L N, Engdahl E R. Travel times for global earthquake location and phase identification. Geophys J Int, 1991, 105: 429–465

    Article  Google Scholar 

  30. Muirhead K J, Datt R. The Nth root process applied to seismic array data. Geophys J R Astron Soc, 1976, 47: 197–210

    Google Scholar 

  31. Capon J. High-resolution frequency-wavenumber spectrum analysis. Proc IEEE, 1969, 57: 1408–1418

    Article  Google Scholar 

  32. Gupta I N, Lynnes C S, Wagner R A. Broadband F-K analysis of array data to identify sources of local scattering. Geophys Res Lett, 1990, 17: 183–186

    Article  Google Scholar 

  33. Goldstein P. Deterministic frequency wavenumber methods and direct measurements of rupture propagation during earthquakes using a dense array: Theory and methods. J Geophys Res, 1991, 96: 6173–6185

    Article  Google Scholar 

  34. Cormier V. Time domain modeling of PKIKP precursor for constraints on the heterogeneity in the lowermost mantle. Geophys J Int, 1995, 121: 725–736

    Article  Google Scholar 

  35. Ren J S, Wang Z X, Chen B W, et al. A Brief Introduction of the Latest Tectonic Map of China. Beijing: Geological Publishing House, 2003. 26–34

    Google Scholar 

  36. Hafkenscheid E, Wortel M J R, Spakman W. Subduction history of the Tethyan region derived from seismic tomography and tectonic reconstructions. J Geophys Res, 2006, 111: B08401, doi: 10.1029/2005JB003791

    Article  Google Scholar 

  37. Wessel P, Smith W H F. New version of the generic mapping tools released. Eos Trans Am Geophys Union, 1995, 76: 329

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XuZhang Shen.

About this article

Cite this article

Shen, X., Zhou, H. Locating seismic scatterers at the base of the mantle beneath eastern Tibet with PKIKP precursors. Chin. Sci. Bull. 55, 723–729 (2010). https://doi.org/10.1007/s11434-009-0382-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0382-1

Keywords

Navigation