Skip to main content
Log in

S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust?

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The fate of a subducted slab is a key ingredient in the context of plate tectonics, yet it remains enigmatic especially in terms of its crustal component. In this study, our efforts are devoted to resolve slab-related structures in the mid-mantle below eastern Indonesia, the Izu–Bonin region, and the Peru area by employing seismic array analysing techniques on high-frequency waveform data from F-net in Japan and the Alaska regional network and the USArray in North America. A pronounced arrival after the direct P wave is observed in the recordings of four deep earthquakes (depths greater than 400 km) from three subduction systems including the Philippines, the Izu–Bonin, and the Peru. This later arrival displays a slightly lower slowness compared to the direct P wave and its back-azimuth deviates somewhat from the great-circle direction. We explain it as an S-to-P conversion at a deep scatterer below the sources in the source region. In total, five scatterers are seen at depths ranging from ~930 to 1500 km. Those scatterers appear to be characterised by an ~7 km-thick low-velocity layer compared to the ambient mantle. Combined evidence from published mineral physical analysis suggests that past subducted oceanic crust, possibly fragmented, is most likely responsible for these thin-layer compositional heterogeneities trapped in the mid-mantle beneath the study regions. Our observations give a clue to the potential fate of subducted oceanic crust.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ballmer, M. D., Schmerr, N. C., Nakagawa, T., & Ritsema, J. (2015). Compositional mantle layering revealed by slab stagnation at 1000-km depth. Science Advances, 1(11), e1500815. https://doi.org/10.1126/sciadv.1500815.

    Article  Google Scholar 

  • Ballmer, M. D., Houser, C., Hernlund, J. W., Wentzcovitch, R. M., & Hirose, K. (2017). Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nature Geoscience, 10(3), 236–240. https://doi.org/10.1038/NGEO2898.

    Article  Google Scholar 

  • Bentham, H., & Rost, S. (2014). Scattering beneath western Pacific subduction zones: evidence for oceanic crust in the mid-mantle. Geophysical Journal International, 197, 1627–1641.

    Article  Google Scholar 

  • Bentham, H. L. M., Rost, S., & Thorne, M. S. (2017). Fine-scale structure of the mid-mantle characterised by global stacks of PP precursors. Earth and Planetary Science Letters, 472, 164–173.

    Article  Google Scholar 

  • Castle, J. C., & Creager, K. C. (1999). A steeply dipping discontinuity in the lower mantle beneath Izu-Bonin. Journal of Geophysical Research: Solid Earth, 104(B4), 7279–7292.

    Article  Google Scholar 

  • Castle, J. C., & van der Hilst, R. D. (2003). Searching for seismic scattering off mantle interfaces between 800 km and 2000 km depth. Journal of Geophysical Research: Solid Earth, 108(B2), 2095. https://doi.org/10.1029/2001JB000286.

    Article  Google Scholar 

  • Courtier, A. M., & Revenaugh, J. (2008). Slabs and shear wave reflectors in the midmantle. Journal of Geophysical Research: Solid Earth, 113, B08312. https://doi.org/10.1029/2007JB005261.

    Article  Google Scholar 

  • Christensen, U. R., & Hofmann, A. W. (1994). Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research: Solid Earth, 99(B10), 19867–19884.

    Article  Google Scholar 

  • Deuss, A., & Woodhouse, J. H. (2002). A systematic search for mantle discontinuities using SS-precursors. Geophysical Research Letters, 29(8), 1249. https://doi.org/10.1029/2002GL014768.

    Article  Google Scholar 

  • Dziewonski, A. M., & Woodhouse, J. H. (1987). Global images of the Earths interior. Science, 236, 37–48.

    Article  Google Scholar 

  • French, S. W., & Romanowicz, B. (2015). Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature, 525, 95–99.

    Article  Google Scholar 

  • Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. Journal of Geophysical Research: Solid Earth, 118(11), 5920–5938.

    Google Scholar 

  • Gu, Y. J., Okeler, A., & Schultz, R. (2012). Tracking slabs beneath northwestern Pacific subduction zones. Earth and Planetary Science Letters, 331–332, 269–280. https://doi.org/10.1016/j.epsl.2012.03.023.

    Article  Google Scholar 

  • Hall, R. (2002). Cenozoic geological and plate tectonic evolution of SE Asia and the SW Pacific: computer-based reconstructions, model and animations. Journal of Asian Earth Sciences, 20, 353–434.

    Article  Google Scholar 

  • Hall, R., & Spakman, W. (2015). Mantle structure and tectonic history of SE Asia. Tectonophysics, 658, 14–45.

    Article  Google Scholar 

  • Hedlin, M. A. H., Shearer, P. M., & Earle, P. S. (1997). Seismic evidence for small-scale heterogeneity throughout the Earths mantle. Nature, 387, 145–150.

    Article  Google Scholar 

  • Helffrich, G. (2006). Heterogeneity in the mantle; its creation, evolution and destruction. Tectonophysics, 416(1–4), 23–31.

    Article  Google Scholar 

  • Hirose, K., Fei, Y., Ma, Y., & Mao, H.-K. (1999). The fate of subducted basaltic crust in the Earths lower mantle. Nature, 397, 53–56.

    Article  Google Scholar 

  • Hofmann, A. W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature, 385(6613), 219–229.

    Article  Google Scholar 

  • Irifune, T., & Ringwood, A. E. (1993). Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle. Earth and Planetary Science Letters, 117, 101–110.

    Article  Google Scholar 

  • Jaxybulatov, K., Koulakov, I., & Dobretsov, N. L. (2013). Segmentation of the Izu-Bonin and Mariana slabs based on the analysis of the Benioff seismicity distribution and regional tomography results. Solid Earth, 4, 59–73. https://doi.org/10.5194/se-4-59-2013.

    Article  Google Scholar 

  • Jenkins, J., Deuss, A., & Cottaar, S. (2017). Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth and Planetary Science Letters, 459, 196–207.

    Article  Google Scholar 

  • Justo, J. F., Morra, G., & Yuen, D. A. (2015). Viscosity undulations in the lower mantle: The dynamical role of iron spin transition. Earth and Planetary Science Letters, 421, 20–26.

    Article  Google Scholar 

  • Kaneshima, S. (2003). Small-scale heterogeneity at the top of the lower mantle around the Mariana slab. Earth and Planetary Science Letters, 209, 85–101.

    Article  Google Scholar 

  • Kaneshima, S. (2009). Seismic scatterers at the shallowest lower mantle beneath subducted slabs. Earth and Planetary Science Letters, 286, 304–315.

    Article  Google Scholar 

  • Kaneshima, S., & Helffrich, G. (2010). Small scale heterogeneity in the mid- lower mantle beneath the circum-Pacific area. Physics of the Earth and Planetary Interiors, 183, 91–103.

    Article  Google Scholar 

  • Kaneshima, S. (2016). Seismic scatterers in the mid-lower mantle. Physics of the Earth and Planetary Interiors, 257, 105–114.

    Article  Google Scholar 

  • Karato, S.-I. (1997). On the separation of crustal component from subducted oceanic lithosphere near the 660 km discontinuity. Physics of the Earth and Planetary Interiors, 99, 103–111.

    Article  Google Scholar 

  • Kawakatsu, H., & Niu, F. (1994). Seismic evidence for a 920-km discontinuity in the mantle. Nature, 371, 301–305.

    Article  Google Scholar 

  • Korenaga, J. (2015). Constraining the geometries of small-scale heterogeneities: A case study from the Mariana region. Journal of Geophysical Research: Solid Earth, 120(11), 7830–7851. https://doi.org/10.1002/2015JB012432.

    Article  Google Scholar 

  • Kennett, B. L. N., & Engdahl, E. R. (1991). Travel times for global earthquake location and phase identification. Geophysical Journal International, 105, 429–465.

    Article  Google Scholar 

  • Lee, C.-T. A., & Chen, W.-P. (2007). Possible density segregation of subducted oceanic lithosphere along a weak serpentinite layer and implications for compositional stratification of the Earth’s mantle. Earth and Planetary Science Letters, 255, 357–366.

    Article  Google Scholar 

  • Li, M., NcNamara, A. K., & Garnero, E. J. (2014). Chemical complexity of hotspots caused by cycling oceanic crust through mantle reservoirs. Nature Geoscience, 7, 366–370. https://doi.org/10.1038/ngeo2120.

    Article  Google Scholar 

  • Li, J., & Yuen, D. A. (2014). Mid-mantle heterogeneities associated with Izanagi plate: implications for regional mantle viscosity. Earth and Planetary Science Letters, 385, 137–144.

    Article  Google Scholar 

  • Li, Y.-Q., Ma, C.-Q., Robinson, P. T., Zhou, Q., & Liu, M.-L. (2015). Recycling of oceanic crust from a stagnant slab in the mantle transition zone: Evidence from Cenozoic continental basalts in Zhejiang Province, SE China. Lithos, 230, 146–165.

    Article  Google Scholar 

  • Mancinelli, N., & Shearer, P. (2016). Scattered energy from a rough core-mantle boundary modeled by a Monte Carlo seismic particle method: Application to PKKP precursors. Geophysical Research Letters, 43(15), 7963–7972. https://doi.org/10.1002/2016GL070286.

    Article  Google Scholar 

  • Marquardt, H., & Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8, 311–314. https://doi.org/10.1038/ngeo2393.

    Article  Google Scholar 

  • Niu, F., Kawakatsu, H., & Fukao, Y. (2003). Seismic evidence for a chemical heterogeneity in the midmantle: a strong and slightly dipping seismic reflector beneath the Mariana subduction zone. Journal of Geophysical Research: Solid Earth, 108, 1978–2012.

    Google Scholar 

  • Niu, F. (2014). Distinct compositional thin layers at mid-mantle depths beneath northeast China revealed by the USArray. Earth and Planetary Science Letters, 402, 305–312.

    Article  Google Scholar 

  • Petersen, N., Gossler, J., Kind, R., Stammler, K., & Vinnik, L. (1993). Precursors to SS and structures of transition zone of the North-Western Pacific. Geophysical Research Letters, 20(4), 281–284.

    Article  Google Scholar 

  • Ren, Y., Stulzmann, E., van der Hilst, R. D., & Besse, J. (2007). Under- standing seismic heterogeneities in the lower mantle beneath the Americas from seismic tomography and plate tectonic history. Journal of Geophysical Research: Solid Earth, 112, B01302. https://doi.org/10.1029/2005JB004154.

    Article  Google Scholar 

  • Rost, S., & Thomas, C. (2002). Array seismology: methods and applications. Reviews of Geophysics, 40(3), 1008. https://doi.org/10.1029/2000RG000100.

    Article  Google Scholar 

  • Rost, S., Garnero, E. J., & Williams, Q. (2008). Seismic array detection of subducted oceanic crust in the lower mantle. Journal of Geophysical Research: Solid Earth, 113, B06303. https://doi.org/10.1029/2007JB005263.

    Article  Google Scholar 

  • Richards, M. A., & Davies, G. F. (1989). On the separation relatively buoyant components from subducted lithosphere. Geophysical Research Letters, 16(8), 831–834.

    Article  Google Scholar 

  • Rudolph, M. L., Lekić, V., & Lithgow-Bertelloni, C. (2015). Viscosity jump in Earth’s mid-mantle. Science, 350(6266), 1349–1352. https://doi.org/10.1126/science.aad1929.

    Article  Google Scholar 

  • Shahnas, M. H., Yuen, D. A., & Pysklywec, R. N. (2017). Mid-mantle heterogeneities and iron spin transition in the lower mantle: Implications for mid-mantle slab stagnation. Earth and Planetary Science Letters, 458, 293–304.

    Article  Google Scholar 

  • Shahnas, M. H., Pysklywec, R. N., Justo, J. F., & Yuen, D. A. (2017). Spin transition-induced anomalies in the lower mantle: implications for mid-mantle partial layering. Geophysical Journal International, 210, 765–773.

    Article  Google Scholar 

  • Shen, X., Yuan, X., & Li, X. (2014). A ubiquitous low-velocity layer at the base of the mantle transition zone. Geophysical Research Letters, 41, 836–842.

    Article  Google Scholar 

  • Tsuchiya, T. (2011). Elasticity of subducted basaltic crust at the lower mantle pressures: insights on the nature of deep mantle heterogeneity. Physics of the Earth and Planetary Interiors, 188, 142–149.

    Article  Google Scholar 

  • Vanacore, E., Niu, F., & Kawakatsu, H. (2006). Observations of the mid-mantle discontinuity beneath Indonesia from S to P converted waveforms. Geophysical Research Letters, 33, L04302. https://doi.org/10.1029/2005GL025106.

    Article  Google Scholar 

  • van Keken, P. E., Karato, S., & Yuen, D. A. (1996). Rheological control of oceanic crust separation in the transition zone. Geophysical Research Letters, 23(14), 1821–1824.

    Article  Google Scholar 

  • Wang, R. (1999). A simple orthonormalization method for stable and efficient computation of Greens functions. Bulletin of the Seismological Society of America, 89, 733–741.

    Google Scholar 

  • Waszek, L., Thomas, C., & Deuss, A. (2015). PKP precursors: Implications for global scatterers. Geophysical Research Letters, 42(10), 3829–3838. https://doi.org/10.1002/2015GL063869.

    Article  Google Scholar 

  • Wessel, P., & Smith, W. H. F. (1995). New version of the generic mapping tools. Eos, Transactions American Geophysical Union, 76(33), 329. https://doi.org/10.1029/95EO00198.

    Article  Google Scholar 

  • Xu, W., Lithgow-Bertelloni, C., Stixrude, L., & Ritsema, J. (2008). The effect of bulk composition and temperature on mantle seismic structure. Earth and Planetary Science Letters, 275, 70–79.

    Article  Google Scholar 

  • Yang, Z., & He, X. (2015). Oceanic crust in the mid-mantle beneath West-Central Pacific subduction zones: Evidence from S to P converted waveforms. Geophysical Journal Internationa, 203(1), 541–547. https://doi.org/10.1093/gji/ggv314.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge IRIS and F-net for making waveform data available. Figures were made with GMT (Wessel and Smith 1995) and GNUPLOT. We thank Prof. Wim Spakman (editor), Dr. Sebastian Rost, and three anonymous reviewers for the careful and constructive review comment. This work was supported by the National Science Foundation of China (Grants 91428309, 41761134051) and State Key Laboratory of Marine Geology, Tongji University (No. MGK1705).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOCX 5,374 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, X., Zheng, Y. S-to-P Conversions from Mid-mantle Slow Scatterers in Slab Regions: Observations of Deep/Stagnated Oceanic Crust?. Pure Appl. Geophys. 175, 2045–2055 (2018). https://doi.org/10.1007/s00024-017-1763-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1763-z

Keywords

Navigation