Skip to main content
Log in

Theoretical study of partial oxidation of ethylene by vanadium trioxide cluster cation

  • Articles/Theoretical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Density functional theory (DFT) study of reaction between vanadium trioxide cluster cation (VO +3 ) and ethylene (C2H4) to yield VO +2 + CH3CHO (acetaldehyde) and VO2CH +2 + HCHO (formaldehyde) is carried out. Structures of all reactants, products, intermediates, and transition state in the reaction have been optimized and characterized. The results show unexpected barriers in the reaction due to the existence of a η2-O2 moiety in the ground state structure of VO +3 . The initial reaction steps combining ethylene adsorption, C=C activation and O-O cleavage are proposed as rate limiting processes. Comparison of reactions of VO +3 + C2H4 with VO3 + C2H4 and VO +2 + C2H4 in the previous studies is made in detail. The results of this work may shed light on the understanding of C=C bond cleavage in related heterogeneous catalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pimentel G C, Coonrod J A. Opportunities in Chemistry. Washington, DC: National Academy Press, 1985

    Google Scholar 

  2. Ogliaro F, Harris N, Cohen S, et al. A model “rebound” mechanism of hydroxylation by cytochrome P450: Stepwise and effectively concerted pathways and their reactivity patterns. J Am Chem Soc, 2000, 122: 8977–8989

    Article  Google Scholar 

  3. Muetterties E L. Molecular Metal Clusters. Science, 1977, 196: 839

    Article  Google Scholar 

  4. Bohme D K, Schwarz H. Gas-phase catalysis by atomic and cluster metal ions: The ultimate single-site catalysts. Angew Chem Int Ed, 2005, 44: 2336–2354

    Article  Google Scholar 

  5. Weckhuysen B M, Keller D E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal Today, 2003, 78: 25–46

    Article  Google Scholar 

  6. Martinez-Huerta M V, Gao X, Tian H, et al. Oxidative dehydrogenation of ethane to ethylene over alumina-supported vanadium oxide catalysts: Relationship between molecular structures and chemical reactivity. Catal Today, 2006, 118: 279–287

    Article  Google Scholar 

  7. Dunn J P, Stenger H G, Wachs I E. Oxidation of sulfur dioxide over supported vanadia catalysts: molecular structure-reactivity relationships and reaction kinetics. Catal Today, 1999, 51: 301–318

    Article  Google Scholar 

  8. Harvey J N, Diefenbach J N, Schroder D, et al. Oxidation properties of the early transition-metal dioxide cations MO +2 (M = Ti, V, Zr, Nb) in the gas-phase. Int J Mass Spectrom., 1999, 182/183: 85–97

    Article  Google Scholar 

  9. Bell R C, Castleman Jr A W. Reactions of Vanadium Oxide Cluster Ions with 1,3-Butadiene and Isomers of Butene. J Phys Chem A, 2002, 106: 9893–9899

    Article  Google Scholar 

  10. Fielicke A, Rademann K. Stability and reactivity patterns of medium-sized vanadium oxide cluster cations VxO +y (4 ⩽ x ⩽ 14). Phys Chem Chem Phys, 2002, 4: 2621–2628

    Article  Google Scholar 

  11. Zemski K A, Justes D R, Castleman A W. Studies of metal oxide clusters: elucidating reactive sites responsible for the activity of transition metal oxide catalysts. J Phys Chem B, 2002, 106: 6136–6148; and references there in.

    Article  Google Scholar 

  12. Justes D R, Mitric R, Moore N A, et al. Theoretical and experimental consideration of the reactions between VxO +y and ethylene. J Am Chem Soc, 2003, 125: 6289–6299

    Article  Google Scholar 

  13. Schröder D, Engeser M, Bronstrup M, et al. Ion chemistry of the hexanuclear methoxo-oxovanadium cluster V6O7(OCH3)12. Int J Mass Spectrom, 2003, 228: 743–757

    Article  Google Scholar 

  14. Engeser M, Schlangen M, Schroder D, et al. Alkane oxidation by VO +2 in the gas phase: A unique dependence of reactivity on the chain length. Organometallics, 2003, 22: 3933–3943

    Article  Google Scholar 

  15. Feyel S, Schroder D, Rozanska X, et al. Gas-phase oxidation of propane and 1-butene with [V3O7]+: Experiment and theory in concert. Angew Chem Int Ed, 2006, 45: 4677–4681

    Article  Google Scholar 

  16. Feyel S, Dobler J, Schroder D, et al. Thermal activation of methane by tetranuclear [V4O10]+. Angew Chem Int Ed, 2006, 45: 4681–4685

    Article  Google Scholar 

  17. Dong F, Heinbuch S, Xie Y, et al. Experimental and theoretical study of the reactions between neutral vanadium oxide clusters and ethane, ethylene, and acetylene. J Am Chem Soc, 2008, 130: 1932–1943

    Article  Google Scholar 

  18. Calatayud M, Silvi B, Andrés J, et al. A theoretical study on the structure, energetics and bonding of VOx and VO +x (x = 1–4) systems. Chem Phys Lett, 2001, 333: 493–503

    Article  Google Scholar 

  19. Calatayud M, Andrés J, Beltrán A. A Systematic density functional theory study of VxO +y and VxOy (x = 2–4, y = 2–10) Systems. J Phys Chem A, 2001, 105: 9760–9775

    Article  Google Scholar 

  20. Gracia L, Sambrano J R, Safont V S, et al. Theoretical study on the molecular mechanism for the reaction of VOy2+ with C2H4. J Phys Chem A, 2003, 107: 3107–3120

    Article  Google Scholar 

  21. Gracia L, Andrés J, Safont V S, et al. DFT Study of the reaction between VO +2 and C2H6. Organometallics, 2004, 23: 730–739

    Article  Google Scholar 

  22. Gracia L, Sambrano J R, Andrés J, et al. Mechanistic insghts into the reaction between VO +2 and propene based on a DFT study. Organometallics, 2006, 25: 1643–1653

    Article  Google Scholar 

  23. Vyboishchikov S F, Sauer J. (V2O5)n gas-phase clusters (n = 1–12) compared to V2O5 Crystal: DFT calculations. J Phys Chem A, 2001, 105: 8588–8598

    Article  Google Scholar 

  24. Gracia L, Polo V, Sambrano J R, et al. Theoretical study on the reaction mechanism of VO +2 with propyne in gas phase. J Phys Chem A, 2008, 112: 1808–1816

    Article  Google Scholar 

  25. Wang Z C, Xue W, Ma Y P, et al. Partial oxidation of propylene catalyzed by VO3 Clusters: A density functional theory study. J Phys Chem A, 2008, 112: 5984–5993

    Article  Google Scholar 

  26. Ma Y P, Xue W, Wang Z C, et al. Acetylene cyclotrimerization catalyzed by TiO2 and VO2 in the gas phase: A DFT study. J Phys Chem A, 2008, 112: 3731–3741

    Article  Google Scholar 

  27. Broclawik E, Haber J, Piskorz W. Molecular mechanism of C.H bond cleavage at transition metal oxide clusters. Chem Phys Lett, 2001, 333: 332–336

    Article  Google Scholar 

  28. Gijzeman O L J, Lingen J N J, Lenthe J H V, et al. A new model for the molecular structure of supported vanadium oxide catalysts. Chem Phys Lett, 2004, 397: 277–281

    Article  Google Scholar 

  29. Keller D E, de Groot F M F, Koningsberger D C, et al. VO4 Upside Down: A new molecular structure for supported VO4 Catalysts. J Phys Chem B, 2005, 109: 10223–10233

    Article  Google Scholar 

  30. Frisch M J, Trucks G W, Schlegel H B, et al. Gaussian03 (Revision B.04); Pittsburgh, PA: Gaussian, Inc. 2003

    Google Scholar 

  31. Schlegel H B. Optimization of equilibrium geometries and transition structures. J Comput Chem, 1982, 3: 214–218

    Article  Google Scholar 

  32. Peng C, Ayala P Y, Schlegel H B, et al. Using redundant internal coordinates to optimize equilibrium geometries and transition states. J Comput Chem, 1996, 17: 49–56

    Article  Google Scholar 

  33. Berente I, Naray-Szabo G. Multicoordinate driven method for approximating enzymatic reaction paths: Automatic definition of the reaction coordinate using a subset of chemical coordinates. J Phys Chem A, 2006, 110: 772–778

    Article  Google Scholar 

  34. Gonzalez C, Schlegel H B. An improved algorithm for reaction path following. J Chem Phys, 1989, 90: 2154–2161

    Article  Google Scholar 

  35. Gonzalez C, Schlegel H B. Reaction path following in massweighted internal coordinates. J Phys Chem, 1990, 94: 5523–5527

    Article  Google Scholar 

  36. Becke A D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A, 1988, 38: 3098–3100

    Article  Google Scholar 

  37. Becke A D. Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys, 1993, 98: 5648–5652

    Google Scholar 

  38. Lee C, Yang W, Parr R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B, 1988, 37: 785–789

    Article  Google Scholar 

  39. Schafer A, Huber C, Ahlrichs R. Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr. J Chem Phys, 1994, 100: 5829–5835

    Article  Google Scholar 

  40. Boys S F, Bernardi F. The calculation of small molecular interactions by the differences of separate total energies: Some procedures with reduced errors. Mol Phys, 1970, 19: 553–566

    Article  Google Scholar 

  41. Simon S, Duran M, Dannenberg J J. How does basis set superposition error change the potential surfaces for hydrogen-bonded dimers? J Chem Phys, 1996, 105: 11024–11031

    Article  Google Scholar 

  42. Noodleman L. Valence bond description of antiferromagnetic coupling in transition metal dimmers. J Chem Phys, 1981, 74: 5737–5743

    Article  Google Scholar 

  43. Caballo R, Castell O, Illas F, et al. Remarks on the proper use of the broken symmetry approach to magnetic coupling. J Phys Chem A, 1997, 101: 7860–7866

    Article  Google Scholar 

  44. Ruszel M, Grzybowska B, Gasior M, et al. Effect of Au in V2O5/SiO2 and MoO3/SiO2 catalysts on physicochemical and catalytic properties in oxidation of C3 hydrocarbons and of CO. Catal Today, 2005, 99: 151–159

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ShengGui He.

Additional information

Supported by the Hundred Talents Fund, Chinese Academy of Sciences and National Natural Science Foundation of China (Grant No. 20703048)

About this article

Cite this article

Wang, Z., Ding, X., Ma, Y. et al. Theoretical study of partial oxidation of ethylene by vanadium trioxide cluster cation. Chin. Sci. Bull. 54, 2814–2821 (2009). https://doi.org/10.1007/s11434-009-0276-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0276-2

Keywords

Navigation