Skip to main content
Log in

Molecular mechanism of propane oxidative dehydrogenation on surface oxygen radical sites of VO x /TiO2 catalysts

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

Minimum energy pathways of propane oxidative dehydrogenation to propene and propanol on supported vanadium oxide catalyst VO x /TiO2 were studied by periodic discrete Fourier transform (DFT) using a surface oxygen radical as the active site. The propene formation pathway was shown to consist of two consecutive hydrogen abstraction steps. The first step includes Cβ–H bond activation of propane followed by the formation of a surface hydroxyl group V–O t H and a propyl radical n-C3H7. This step with the activation energy E* = 0.56 eV (54.1 kJ/mol) appears to be rate-determining. The second step involves the reaction of the bridging O b oxygen atom with the methylene C–H bond of propyl radical n-C3H7 followed by the formation of a hydroxylated surface site HO t –V4+–O b H and propene. The initial steps of the C–H bond activation during propane conversion to propanol and propene by ODH on V5+–(O t O b ) active sites are identical. The obtained results demonstrate that participation of surface oxygen radicals as the active sites of propane ODH makes it possible to explain relatively low activation energies observed for this reaction on the most active catalysts. The presence of very active radical species in low concentration seems to be the key factor for obtaining high selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H.H. Kung, Adv. Catal. 40, 1 (1994)

    CAS  Google Scholar 

  2. E.A. Mamedov, V.C. Corberan, Appl. Catal. A-Gen. 127, 1 (1995)

    Article  CAS  Google Scholar 

  3. R. Grabowski, Catal. Rev.-Sci. Eng. 48, 199 (2006)

    Article  CAS  Google Scholar 

  4. C. Carrero, R. Schloegl, I. Wachs, R. Schomaecker, ACS Catal. 4, 3357 (2014)

    Article  CAS  Google Scholar 

  5. V.V. Chesnokov, A.F. Bedilo, D.S. Heroux, I.V. Mishakov, K.J. Klabunde, J. Catal. 218, 438 (2003)

    Article  CAS  Google Scholar 

  6. I.V. Mishakov, E.V. Ilyina, A.F. Bedilo, A.A. Vedyagin, React. Kinet. Catal. Lett. 97, 355 (2009)

    Article  CAS  Google Scholar 

  7. E.V. Ilyina, I.V. Mishakov, A.A. Vedyagin, S.V. Cherepanova, A.N. Nadeev, A.F. Bedilo, K.J. Klabunde, Microporous Mesoporous Mater. 160, 32 (2012)

    Article  CAS  Google Scholar 

  8. B. Beck, M. Harth, N.G. Hamilton, C. Carrero, J.J. Uhlrich, A. Trunschke, S. Shaikhutdinov, H. Schubert, H.J. Freund, R. Schlogl, J. Sauer, R. Schomacker, J. Catal. 296, 120 (2012)

    Article  CAS  Google Scholar 

  9. J.K. Lee, U.G. Hong, Y. Yoo, Y.J. Cho, J. Lee, H. Chang, I.K. Song, J. Nanosci. Nanotechnol. 13, 8110 (2013)

    Article  CAS  Google Scholar 

  10. E.V. Ilyina, I.V. Mishakov, A.A. Vedyagin, A.F. Bedilo, K.J. Klabunde, Microporous Mesoporous Mater. 175, 76 (2013)

    Article  CAS  Google Scholar 

  11. A.F. Bedilo, E.I. Shuvarakova, A.M. Volodin, E.V. Ilyina, I.V. Mishakov, A.A. Vedyagin, V.V. Chesnokov, D.S. Heroux, K.J. Klabunde, J. Phys. Chem. C 118, 13715 (2014)

    Article  CAS  Google Scholar 

  12. C.A. Carrero, C.J. Keturakis, A. Orrego, R. Schomacker, I.E. Wachs, Dalton Trans. 42, 12644 (2013)

    Article  CAS  Google Scholar 

  13. I. Rossetti, G.F. Mancini, P. Ghigna, M. Scavini, M. Piumetti, B. Bonelli, F. Cavani, A. Comite, J. Phys. Chem. C 116, 22386 (2012)

    Article  CAS  Google Scholar 

  14. N.U. Zhanpeisov, S. Higashimoto, M. Anpo, Int. J. Quantum Chem. 84, 677 (2001)

    Article  CAS  Google Scholar 

  15. N.U. Zhanpeisov, Res. Chem. Intermed. 30, 133 (2004)

    Article  CAS  Google Scholar 

  16. H. Fu, Z.P. Liu, Z.H. Li, W.N. Wang, K.N. Fan, J. Am. Chem. Soc. 128, 11114 (2006)

    Article  CAS  Google Scholar 

  17. X. Rozanska, E.V. Kondratenko, J. Sauer, J. Catal. 256, 84 (2008)

    Article  CAS  Google Scholar 

  18. N.N. Ha, N.D. Huyen, L.M. Cam, Appl. Catal. A-Gen. 407, 106 (2011)

    Article  Google Scholar 

  19. K. Alexopoulos, M.F. Reyniers, G.B. Marin, J. Catal. 289, 127 (2012)

    Article  CAS  Google Scholar 

  20. Y.J. Du, Z.H. Li, K.N. Fan, J. Mol. Catal. A-Chem. 379, 122 (2013)

    Article  CAS  Google Scholar 

  21. L. Cheng, G.A. Ferguson, S.A. Zygmunt, L.A. Curtiss, J. Catal. 302, 31 (2013)

    Article  CAS  Google Scholar 

  22. I. Muylaert, P. Van Der Voort, Phys. Chem. Chem. Phys. 11, 2826 (2009)

    Article  CAS  Google Scholar 

  23. A. Dinse, B. Frank, C. Hess, D. Habel, R. Schomacker, J. Mol. Catal. A-Chem. 289, 28 (2008)

    Article  CAS  Google Scholar 

  24. D. Shee, T. Rao, V, G. Deo. Catal. Today 118, 288 (2006)

    Article  CAS  Google Scholar 

  25. R.P. Singh, M.A. Banares, G. Deo, J. Catal. 233, 388 (2005)

    Article  CAS  Google Scholar 

  26. D.A. Medvedev, A.A. Rybinskaya, R.M. Kenzhin, A.M. Volodin, A.F. Bedilo, Phys. Chem. Chem. Phys. 14, 2587 (2012)

    Article  CAS  Google Scholar 

  27. A.F. Bedilo, E.I. Shuvarakova, A.A. Rybinskaya, D.A. Medvedev, J. Phys. Chem. C 118, 15779 (2014)

    Article  CAS  Google Scholar 

  28. A.F. Bedilo, A.M. Volodin, Kinet. Catal. 50, 314 (2009)

    Article  CAS  Google Scholar 

  29. R.A. Zotov, V.V. Molchanov, A.M. Volodin, A.F. Bedilo, J. Catal. 278, 71 (2011)

    Article  CAS  Google Scholar 

  30. R.M. Richards, A.M. Volodin, A.F. Bedilo, K.J. Klabunde, Phys. Chem. Chem. Phys. 5, 4299 (2003)

    Article  CAS  Google Scholar 

  31. S.E. Malykhin, A.M. Volodin, A.F. Bedilo, G.M. Zhidomirov, J. Phys. Chem. C 113, 10350 (2009)

    Article  CAS  Google Scholar 

  32. M. Che, A.J. Tench, Adv. Catal. 31, 77 (1982)

    CAS  Google Scholar 

  33. A.M. Volodin, Catal. Today 58, 103 (2000)

    Article  CAS  Google Scholar 

  34. C.H. Lin, T. Ito, J.X. Wang, J.H. Lunsford, J. Am. Chem. Soc. 109, 4808 (1987)

    Article  CAS  Google Scholar 

  35. V.A. Shvets, V.B. Kazansky, J. Catal. 25, 123 (1972)

    Article  CAS  Google Scholar 

  36. H. Launay, S. Loridant, D.L. Nguyen, A.M. Volodin, J.L. Dubois, J.M.M. Millet, Catal. Today 128, 176 (2007)

    Article  CAS  Google Scholar 

  37. E.V. Kondratenko, A. Bruckner, J. Catal. 274, 111 (2010)

    Article  CAS  Google Scholar 

  38. A.M. Volodin, V.A. Bolshov, Kinet. Catal. 34, 142 (1993)

    Google Scholar 

  39. S.P. Price, X. Tong, C. Ridge, H.L. Neilson, J.W. Buffon, J. Robins, H. Metiu, M.T. Bowers, S.K. Buratto, J. Phys. Chem. A 118, 8309 (2014)

    Article  CAS  Google Scholar 

  40. V.I. Avdeev, V.N. Parmon, J. Phys. Chem. C 113, 2873 (2009)

    Article  CAS  Google Scholar 

  41. V.I. Avdeev, V.M. Tapilin, J. Phys. Chem. C 114, 3609 (2010)

    Article  CAS  Google Scholar 

  42. V.I. Avdeev, A.F. Bedilo, J. Phys. Chem. C 117, 2879 (2013)

    Article  CAS  Google Scholar 

  43. V.I. Avdeev, A.F. Bedilo, J. Phys. Chem. C 117, 14701 (2013)

    Article  CAS  Google Scholar 

  44. G.S. Herman, M.R. Sievers, Y. Gao, Phys. Rev. Lett. 84, 3354 (2000)

    Article  CAS  Google Scholar 

  45. M. Lazzeri, A. Selloni, Phys. Rev. Lett. 87, 266105 (2001)

    Article  CAS  Google Scholar 

  46. S.T. Choo, Y.G. Lee, I.S. Nam, S.W. Ham, J.B. Lee, Appl. Catal. A-Gen. 200, 177 (2000)

    Article  CAS  Google Scholar 

  47. O.B. Lapina, A.A. Shubin, A.V. Nosov, E. Bosch, J. Spengler, H. Knozinger, J. Phys. Chem. B 103, 7599 (1999)

    Article  CAS  Google Scholar 

  48. S. Albonetti, F. Cavani, F. Trifiro, Catal. Rev.-Sci. Eng. 38, 413 (1996)

    Article  CAS  Google Scholar 

  49. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009)

    Article  Google Scholar 

  50. D. Vanderbilt, Phys. Rev. B 41, 7892–7895 (1990)

    Article  Google Scholar 

  51. J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996)

    Article  CAS  Google Scholar 

  52. G. Henkelman, B.P. Uberuaga, H. Jonsson, J. Chem. Phys. 113, 9901 (2000)

    Article  CAS  Google Scholar 

  53. V. Balcaen, I. Sack, M. Olea, G. Marin, Appl. Catal. A-Gen. 371, 31 (2009)

    Article  CAS  Google Scholar 

  54. G.I. Panov, K.A. Dubkov, E.V. Starokon, Catal. Today 117, 148 (2006)

    Article  CAS  Google Scholar 

  55. S.A. Surin, A.D. Shuklov, B.N. Shelimov, V.B. Kazanskii, Kinet. Katal. 19, 435 (1978)

    CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Russian Foundation for Basic Research (Grants 14-03-01110 and 15-03-08070).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander F. Bedilo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 411 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, V.I., Bedilo, A.F. Molecular mechanism of propane oxidative dehydrogenation on surface oxygen radical sites of VO x /TiO2 catalysts. Res Chem Intermed 42, 5237–5252 (2016). https://doi.org/10.1007/s11164-015-2355-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-015-2355-0

Keywords

Navigation