Skip to main content
Log in

Di-electrophoresis assembly and fabrication of SWCNT field-effect transistor

  • Articles / Mechanical Engineering
  • Published:
Chinese Science Bulletin

Abstract

In the process of fabricating nano electrical device or system based on single-walled carbon nanotube (SWCNT), the controllable assembly and fabrication of SWCNT field-effect transistor (SWCNT FET) is a key issue. SWCNT FET is the most basic and important component in nano electronics. After microelectrode chip of back-gate FET is designed and fabricated, di-electrophoresis technology is adopted to realize the controllable alignment and assembly of SWCNTs, based on dispersing SWCNT by sodium dodecyl sulphate (SDS) facilitated ultra-sonication technique and removing impurities by centrifugal technique. The experiments of SWCNTs assembly demonstrate that SWCNTs are aligned and assembled uniformly at the microelectrodes gap with the alignment density nearly proportional to di-electrophoresis duration and solution concentration. After the processes of rinsing, drying and improving, metallic SWCNTs among the assembled SWCNTs are burned out and residual SDS is removed, and perfect field-effect performance of SWCNT FET is eventually obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993, 363: 603–604

    Article  Google Scholar 

  2. Dresselhaus M S. Nanotechnology: New tricks with nanotubes. Nature, 1998, 391: 19–20

    Article  Google Scholar 

  3. Bezryadin A, Verschueren A R M, Tans S J, et al. Multiprobe transport experiments on individual single-wall carbon nanotubes. Phys Rev Lett, 1998, 80: 4036–4039

    Article  Google Scholar 

  4. Frank S, Poncharal P, Wang Z L, et al. Carbon nanotube quantum resistors. Science, 1998, 280: 1744–1746

    Article  Google Scholar 

  5. Tans S J, Verschueren A R M, Dekker C. Room-temperature transistor based on a single carbon nanotube. Nature, 1998, 393: 49–52

    Article  Google Scholar 

  6. Baughman R H, Zakhidov A A, De Heer W A. Carbon nanotubes — The route toward applications. Science, 2002, 297: 787–792

    Article  Google Scholar 

  7. McEuen P L, Fuhrer M S, Park H K. Single-walled carbon nanotube electronics. IEEE Tran Nanotech, 2002, 1: 78–85

    Article  Google Scholar 

  8. Avouris Ph, appenzeller J, Martel R, et al. Carbon nanotube electronics. J Proc IEEE, 2003, 91: 1172–1784

    Article  Google Scholar 

  9. Dai H J, Javey A, Pop A, et al. Electrical transport properties and Field-Effect Transistors of Carbon Nanotubes. NANO: Brief Reports and Reviews, 2006, 1: 1–4

    Google Scholar 

  10. Li P J, Zhang W J, Zhang Q F, et al. The influence of contact metal in carbon nanotube transistor. Acta Phys Sin, 2006, 55: 5460–5465

    Google Scholar 

  11. Hu Y F, Yao K, Wang S, et al. Fabrication of high performance top-gate complementary inverter using a single carbon nanotube and via a simple process. Appl Phys Lett, 2007, 90: 223116–223118

    Article  Google Scholar 

  12. Martel R, Schmidt T, Shea H R, et al. Single and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett, 1998, 73: 2447–2449

    Article  Google Scholar 

  13. Wind S J, Appenzeller J, Martel R, et al. Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes. Appl Phys Lett, 2002, 80: 3817–3819

    Article  Google Scholar 

  14. Brintlinger T, Fuhrer M S, Melngailis J, et al. Electrodes for carbon nanotube devices by focused electron beam induced deposition of gold. J Vacuum Sci Tech B, 2005, 23: 3174–3177

    Article  Google Scholar 

  15. Soh H T, Quate C F, Morpurgo A F, et al. Integrated nanotube circuits: Controlled growth and ohmic contacting of single-walled carbon nanotubes. Appl Phys Lett, 1999, 75: 627–629

    Article  Google Scholar 

  16. Tian X J, Wang Y C, Xi N, et al. A study on single CNT’s accurate assembly and electrical contact for fabricating nanoelectronic device. JCEMS, 2006, 25: 490–493

    Google Scholar 

  17. Nagahara L A, Amlani I, Lewenstein J, et al. Directed placement of suspended carbon nanotubes for nanometer-scale assembly. Appl Phys Lett, 2002, 80: 3826–3828

    Article  Google Scholar 

  18. Wakaya F, Takaoka J, Fukuzumi K, et a1. Fabrication of a carbon nanotube device using a patterned electrode and a local electric field. Superlatt Microstruct, 2003, 34: 401–405

    Article  Google Scholar 

  19. Krupke R, Hennrich F, Weber H B, et al. Contacting single bundles of carbon nanotubes with alternating electric fields. Appl Phys A, 2003, 76: 397–400

    Article  Google Scholar 

  20. Li J Q, Zhang Q, Peng N, et al. Manipulation of carbon nanotubes using AC dielectrophoresis. Appl Phys Lett, 2005, 86: 153116–53118

    Article  Google Scholar 

  21. Tian X J, Wang Y C, Xi N, et al. Pulse Gas Alignment and AFM Manipulation of Single-Wall Carbon Nanotube. Chinese Sci Bull, 2008, 53: 251–256

    Article  Google Scholar 

  22. Collins P G, Arnold M S, Avouris Ph. Engineering carbon nanotubes and using electrical breakdown. Science, 2001, 292: 706–709

    Article  Google Scholar 

  23. Martina C A, Sandler J K W, Windle A H, et al. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer, 2005, 46: 877–886

    Article  Google Scholar 

  24. Collins P G, Bradley K, Ishigami M, et al. Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science, 2000, 287: 1801–1804

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to XiaoJun Tian.

Additional information

Supported by the National High-Tech Research & Development Program of China (Grant No. 2006AA04Z320), and Kwan-cheng Wong Research Fellowship, Chinese Academy of Sciences, China

About this article

Cite this article

Tian, X., Wang, Y., Yu, H. et al. Di-electrophoresis assembly and fabrication of SWCNT field-effect transistor. Chin. Sci. Bull. 54, 4451–4457 (2009). https://doi.org/10.1007/s11434-009-0206-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0206-3

Keywords

Navigation