Skip to main content
Log in

The neighbor list algorithm for a parallelepiped box in molecular dynamics simulations

  • Articles/Solid-State Mechanics
  • Published:
Chinese Science Bulletin

Abstract

In classic molecular dynamics (MD) simulations, the conventional Verlet table, cell linked list and many other techniques have been adopted to increase the computational efficiency. However, these methods are only applicable in cubic systems. In this work, the above techniques along with the metric-tensor method are extended to handle NP ensembles, so that MD simulations can be carried out under the most general loading conditions. In order to do so, a particular spatial Cartesian reference frame is proposed to determine the scaling matrix. Also, a combination method, taking the advantages of the improved Verlet table and cell linked list, is established to identify the neighbor atoms very quickly in a parallelepiped box. An example using Lennard-Jones potential is presented to verify the validity of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Verlet L. Computer “experiments” on classical fluids. I. Thermodynamical properties of lennard-jones molecules. Phys Rev, 1967, 159(1): 98–103

    Article  Google Scholar 

  2. Quentrec B, Brot C. New method for searching for neighbors in molecular dynamics computations. J Comput Phys, 1973, 13(3): 430–432

    Article  Google Scholar 

  3. Boris J. A vectorized near neighbors algorithm of order n using a monotonic logical grid. J Comput Phys, 1986, 66(1): 1–20

    Article  Google Scholar 

  4. Morales J, Rull L, Toxvaerd S. Efficiency test of the traditional MD and the link-cell methods. Comput Phys Commun, 1989, 56(2): 129–134

    Article  Google Scholar 

  5. Chialvo A A, Debenedetti P G. On the performance of an automated verlet neighbor list algorithm for large systems on a vector processor. Comput Phys Commun, 1991, 64(1): 15–18

    Article  Google Scholar 

  6. Mattson W, Rice B M. Near-neighbor calculations using a modified cell-linked list method. Comput Phys Commun, 1999, 119(2–3): 135–148

    Article  Google Scholar 

  7. Fang Q, Wang R, Liu C. Movable hash algorithm for search of the neighbor atoms in molecular dynamics simulation. Comp Mater Sci, 2002, 24(4): 453–456

    Article  Google Scholar 

  8. Petrella R J, Andricioaei I, Brooks B R, et al. An improved method for nonbonded list generation: Rapid determination of near-neighbor pairs. J Comput Chem, 2003, 24(2): 222–231

    Article  Google Scholar 

  9. Matin M, Daivis P, Todd B. Cell neighbor list method for planar elongational flow: Rheology of a diatomic fluid. Comput Phys Commun, 2003, 151(1): 35–46

    Article  Google Scholar 

  10. Yao Z, Wang J, Liu G, et al. Improved neighbor list algorithm in molecular simulations using cell decomposition and data sorting method. Comput Phys Commun, 2004, 161(1–2): 27–35

    Article  Google Scholar 

  11. Zhang Y J, Dong G N, Mao J H, et al. Molecular dynamics simulation of the deposition process of hydrogenated diamond-like carbon (DLC) films. Chinese Sci Bull, 2008, 53(7): 1094–1099

    Article  Google Scholar 

  12. Chen L Q, Wang C Y, Yu T. Molecular dynamics simulation of kink in 〈100〉 edge dislocation in body centred cubic iron. Chinese Sci Bull, 2007, 52(16): 2291–2296

    Article  Google Scholar 

  13. Li S Q, Yao Q, Chen B, et al. Molecular dynamics simulation and continuum model-ling of granular surface flow in rotating drums. Chinese Sci Bull, 2007, 52(5): 692–700

    Article  Google Scholar 

  14. Zhao Q, Zhang F, Zhou H. Collision dynamics of He@C60+He@C60 at low energies. Sci China Ser G, 2008, 51(7): 765–772

    Article  Google Scholar 

  15. Cui Z W, Sun Y, Qu J M. Constant pressure molocular dynamics simulation for ionic system. J Comput Thero Nano, 2008, 5: 1646–1650

    Article  Google Scholar 

  16. Zhang S, Chen N. Molecular dynamics simulations for high-pressure induced b1-b2 transition in nacl by mobius pair potentials. Model Simul Mater Sci Eng, 2003, 11(3): 331–338

    Article  Google Scholar 

  17. Parrinello M, Rahman A. Strain fluctuations and elastic constants. J Chem Phys, 1982, 76(5): 2662–2666

    Article  Google Scholar 

  18. Gusev A A, Zehnder M M, Suter U W. Fluctuation formula for elastic constants. Phys Rev B, 1996, 54(1): 1–4

    Article  Google Scholar 

  19. Cui Z W, Sun Y, Li J, et al. Combination method for the calculation of elastic constants. Phys Rev B, 2007, 75(21): 214101

    Article  Google Scholar 

  20. Souza I, Martins J. Metric tensor as the dynamical variable for variable cell-shape molecular dynamics. Phys Rev B, 1997, 55(14): 8733–8742

    Article  Google Scholar 

  21. Parrinello M, Rahman A. Crystal structure and pair potentials: A molecular-dynamics study. Phys Rev Lett, 1980, 45(14): 1196–1199

    Article  Google Scholar 

  22. Ciccotti J R G. Molecular dynamics simulation of rigid molecules. Comput Phys Rep, 1986, 4: 345–392

    Article  Google Scholar 

  23. Nose S, Klein M. Constant pressure molecular dynamics for molecular system. Mol Phys, 1983, 50(5): 1055–1076

    Article  Google Scholar 

  24. Allen M, Tildesley D. Computer Simulation of Liquids. Oxford: Oxford University Press, 1987

    Google Scholar 

  25. Bekker H. Unification of box shapes in molecular simulations. J Comput Chem, 1997, 18(15): 1930–1942

    Article  Google Scholar 

  26. Gonnet P. A simple algorithm to accelerate the computation of non-bonded interactions in cell-based molecular dynamics simulations. J Comput Chem, 2007, 28(2): 570–573

    Article  Google Scholar 

  27. Puetz M, Kolb A. Optimization techniques for parallel molecular dynamics using domain decomposition. Comput Phys Commun, 1998, 113(2–3): 145–167

    Article  Google Scholar 

  28. Bond S D, Leimkuhler B J, Laird B B. The nose-poincare method for constant temperature molecular dynamics. J Comput Phys, 1999, 151(1): 114–134

    Article  Google Scholar 

  29. Sun G. Construction of high order symplectic runge-kutta methods. J Comput Math, 1993, 11(3): 250–260

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Sun.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 10472028) and Excellent Youth Foundation of Heilongjiang Province

About this article

Cite this article

Cui, Z., Sun, Y. & Qu, J. The neighbor list algorithm for a parallelepiped box in molecular dynamics simulations. Chin. Sci. Bull. 54, 1463–1469 (2009). https://doi.org/10.1007/s11434-009-0197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-009-0197-0

Keywords

Navigation