The Siberian Traps and the End-Permian mass extinction: a critical review


The association between the Siberian Traps, the largest continental flood basalt province, and the largest-known mass extinction event at the end of the Permian period, has been strengthened by recently- published high-precision 40Ar/39Ar dates from widespread localities across the Siberian province[1]. We argue that the impact of the volcanism was amplified by the prevailing late Permian environmental conditions—in particular, the hothouse climate, with sluggish oceanic circulation, that was leading to widespread oceanic anoxia. Volcanism released large masses of sulphate aerosols and carbon dioxide, the former triggering short-duration volcanic winters, the latter leading to long-term warming. Whilst the mass of CO2 released from individual eruptions was small compared with the total mass of carbon in the atmosphere-ocean system, the long ‘mean lifetime’ of atmospheric CO2, compared with the eruption flux and duration, meant that significant accumulation could occur over periods of 105 years. Compromise of the carbon sequestration systems (by curtailment of photosynthesis, destruction of biomass, and warming and acidification of the oceans) probably led to rapid atmospheric CO2 build-up, warming, and shallow-water anoxia, leading ultimately to mass extinction.

This is a preview of subscription content, log in to check access.


  1. 1

    Reichow M K, Pringle M S, Al’Mukhamedov A I, et al. The timing and extent of the eruption of the Siberian Traps large igneous province: Implications for the end-Permian environmental crisis. Earth Planet Sci Lett, doi: 10.1016/j.epsl.2008.09.030

  2. 2

    Raup D M, Sepkoski J J. Mass extinctions in the marine fossil record. Science, 1982, 215: 1501–1503

    PubMed  Article  Google Scholar 

  3. 3

    Keller G, Adatte T, Berner Z, et al. Chicxulub impact predates K-T boundary: New evidence from Brazos, Texas. Earth Planet Sci Lett, 2007, 255: 339–356

    CAS  Article  Google Scholar 

  4. 4

    Vogt P R. Evidence for global synchronism in mantle plume convection, and possible significance for geology. Nature, 1972, 240: 338–342

    Article  Google Scholar 

  5. 5

    McLean D M. Deccan traps mantle degassing in the terminal Cretaceous marine extinctions. Cret Res, 1985, 6: 235–259

    CAS  Article  Google Scholar 

  6. 6

    Rampino M R, Stothers R B. Flood basalt volcanism during the past 250 million years. Science, 1988, 241: 663–668

    PubMed  CAS  Article  Google Scholar 

  7. 7

    Stothers R B. Flood basalts and extinction events. Geophys Res Lett, 1993, 20: 1399–1402

    Article  Google Scholar 

  8. 8

    Courtillot V. Mass extinctions in the last 300 million years: One impact and seven flood basalts? Israeli J Earth Sci, 1994, 43: 255–266

    Google Scholar 

  9. 9

    Wignall P B. Large igneous provinces and mass extinctions. Earth-Sci Rev, 2001, 53: 1–33

    CAS  Article  Google Scholar 

  10. 10

    Courtillot V E, Renne P R. On the ages of flood basalt events. Comptes Rend Geosc, 2003, 335: 113–140

    Article  Google Scholar 

  11. 11

    White R V, Saunders A D. Volcanism, impact and mass extinctions: Incredible or credible coincidences. Lithos, 2005, 79: 299–316

    CAS  Article  Google Scholar 

  12. 12

    Hallam A, Wignall P B. Mass Extinctions and Their Aftermath. New York: Oxford University Press, 1997

    Google Scholar 

  13. 13

    Sahney S, Benton M J. Recovery from the most profound mass extinction of all time. Proc Roy Soc Lond Ser B, 2008, 275: 759–765

    Article  Google Scholar 

  14. 14

    Renne P R, Basu A R. Rapid eruption of the Siberian Traps flood basalts at the Permo-Triassic boundary. Science, 1991, 253: 176–179

    PubMed  Article  Google Scholar 

  15. 15

    Campbell I A, Czamanske G K, Fedorenko V A, et al. Synchronism of the Siberian Traps and the Permian-Triassic boundary. Science, 1992, 258: 1760–1763

    PubMed  CAS  Article  Google Scholar 

  16. 16

    Renne P R, Zichao Z, Richards M A, et al. Synchrony and causal relations between Permian-Triassic boundary crises and Siberian flood volcanism. Science, 1995, 269: 1413–1416

    PubMed  CAS  Article  Google Scholar 

  17. 17

    Fedorenko V A, Lightfoot P C, Naldrett A J, et al. Petrogenesis of the Siberian flood-basalt sequence at Noril’sk, North Central Siberia. Int Geol Rev, 1996, 38: 99–135

    Article  Google Scholar 

  18. 18

    Vyssotski A V, Vyssotski V N, Nezhdanov A A. Evolution of the West Siberian Basin. Mar Petrol Geol, 2006, 23: 93–126

    CAS  Article  Google Scholar 

  19. 19

    Saunders A D, England R W, Reichow M K, et al. A mantle plume origin for the Siberian Traps: Uplift and extension in the West Siberian Basin, Russia. Lithos, 2005, 79: 407–424

    CAS  Article  Google Scholar 

  20. 20

    Westphal M, Gurevitch E L, Samsonov B V, et al. Magnetostratigraphy of the lower Triassic volcanics from deep drill SG6 in western Siberia: Evidence for long-lasting Permo-Triassic volcanic activity. Geophys J Int, 1998, 134: 254–266

    Article  Google Scholar 

  21. 21

    Jay A E, Widdowson M. Stratigraphy, structure and volcanology of the SE Deccan continental flood basalt province: Implications for eruptive extent and volumes. J Geol Soc Lond, 2008, 165: 177–188

    CAS  Article  Google Scholar 

  22. 22

    Dalrymple G B, Czamanske G K, Fedorenko V A, et al. A reconnaissance 40Ar/39Ar geochronologic study of ore-bearing and related rocks, Siberian Russia. Geochim Cosmochim Acta, 1995, 59: 2071–2083

    CAS  Article  Google Scholar 

  23. 23

    Venkatesan T R, Kumar A, Gopalan K, et al. 40Ar-39Ar age of Siberian basaltic magmatism. Chem Geol, 1997, 138: 303–310

    CAS  Article  Google Scholar 

  24. 24

    Basu A R, Poreda R J, Renne P R, et al. High-3He plume origin and temporal-spatial evolution of the Siberian flood basalts. Science, 1995, 269: 822–825

    PubMed  CAS  Article  Google Scholar 

  25. 25

    Reichow M K, Saunders A D, White R V, et al. New 40Ar-39Ar data on basalts from the West Siberian Basin: Extent of the Siberian flood basalt province doubled. Science, 2002, 296: 1846–1849

    PubMed  CAS  Article  Google Scholar 

  26. 26

    Kamo S L, Czamanske G K, Amelin Y, et al. Rapid eruption of Siberian flood-volcanic rocks and evidence for coincidence with the Permian-Triassic boundary and mass extinction at 251 Ma. Earth Planet Sci Lett, 2003, 214: 75–91

    CAS  Article  Google Scholar 

  27. 27

    Chenet A-L, Quidelleur X, Fluteau F, et al. 40K-40Ar dating of the Main Deccan large igneous province: Further evidence of KTB age and short duration. Earth Planet Sci Lett, 2007, 263: 1–15

    CAS  Article  Google Scholar 

  28. 28

    Chenet A-L, Fluteau F, Courtillot V, et al. Determination of rapid Deccan eruptions across the Cretaceous-Tertiary boundary using paleomagnetic secular variation: Results from a 1200-m-thick section in the Mahabaleshwar escarpment. J Geophys Res, 2008, 113(B4), doi: 10.1029/2006JB004635

  29. 29

    Larsen R B, Tegner C. Pressure conditions for the solidification of the Skaergaard intrusion: Eruption of East Greenland flood basalts in less than 300,000 years. Lithos, 2006, 92: 181–197

    CAS  Article  Google Scholar 

  30. 30

    Yin H, Kexin Z, Jinnan T, et al. The global stratotype section and point of the Permo-Triassic boundary. Episodes, 2001, 24: 102–114

    Google Scholar 

  31. 31

    Yin H, Yang F, Zhang K, et al. A proposal to the biostratigraphic criterion of the Permian/Triassic boundary. Mem Soci Geol Ital, 1986, 34: 329–344

    Google Scholar 

  32. 32

    Jin Y G, Wang Y, Wang W, et al. Pattern of marine mass extinction near the Permian-Triassic boundary in south China. Science, 2000, 289: 432–436

    PubMed  CAS  Article  Google Scholar 

  33. 33

    Bowring S A, Erwin D H, Jin Y G, et al. Zircon geochronology and tempo of the end-Permian mass extinction. Science, 1998, 280: 1039–1045

    PubMed  CAS  Article  Google Scholar 

  34. 34

    Mundil R, Ludwig K R, Metcalfe I, et al. Age and timing of the Permian mass extinctions: U/Pb dating of closed-system zircons. Science, 2004, 305: 1760–1762

    PubMed  CAS  Article  Google Scholar 

  35. 35

    Min K, Mundil R, Renne P R, et al. A test for systematic errors in 40Ar/39Ar geochronology through comparison with U/Pb analysis of a 1.3-Ga rhyolite. Geochim Cosmochim Acta, 2000, 64: 73–98

    CAS  Article  Google Scholar 

  36. 36

    Montanez I P, Tabor N J, Niemeier D, et al. CO2-forced climate and vegetation instability during late Paleozoic deglaciation. Science, 2007, 315: 87–91

    PubMed  CAS  Article  Google Scholar 

  37. 37

    Kidder D L, Worsley T R. Causes and consequences of extreme Permo-Triassic warming to globally equable climate and relation to the Permo-Triassic extinction and recovery. Palaeogeogr Palaeoclimatol Palaeoecol, 2004, 203: 207–237

    Article  Google Scholar 

  38. 38

    Kiehl J T, Shields C A. Climate simulation of the latest Permian: Implications for mass extinction. Geology, 2005, 33: 757–760

    Article  Google Scholar 

  39. 39

    Berner R A. GEOCARBSULF: A combined model for Phanerozoic atmospheric O2 and CO2. Geochim Cosmochim Acta, 2006, 70: 5653–5664

    CAS  Article  Google Scholar 

  40. 40

    Hyde W T, Grossman E L, Crowley T J, et al. Siberian glaciation as a constraint on Permian-Carboniferous CO2 levels. Geology, 2006, 34: 421–424

    CAS  Article  Google Scholar 

  41. 41

    Royer D L. CO2-forced climate thresholds during the Phanerozoic. Geochim Cosmochim Acta, 2006, 70: 5665–5675

    CAS  Article  Google Scholar 

  42. 42

    Isozaki Y. Permo-Triassic boundary superanoxia and stratified superocean: Records from lost deep sea. Science, 1997, 276: 235–238

    PubMed  CAS  Article  Google Scholar 

  43. 43

    Erwin D H. The Permo-Triassic extinction. Nature, 1994, 367: 231–236

    Article  Google Scholar 

  44. 44

    Erwin D H. Impact at the Permo-Triassic boundary: A critical evaluation. Astrobiology, 2003, 3: 67–74

    PubMed  Article  Google Scholar 

  45. 45

    Erwin D H. Extinction: How Life on Earth Nearly Ended 250 Million Years Ago. Princeton and Oxford: Princeton University Press, 2005. 296

    Google Scholar 

  46. 46

    White R V. Earth’s biggest ‘whodunnit’: Unravelling the clues in the case of the end-Permian mass extinction. Phil Trans Roy Soc Lond Ser A, 2002, 360: 2963–2985

    Article  Google Scholar 

  47. 47

    Benton M J. When Life Nearly Died. The Greatest Mass Extinction of all Time. London: Thames and Hudson, 2003. 336

    Google Scholar 

  48. 48

    Benton M J, Twitchett R J. How to kill (almost) all life: The end-Permian extinction event. Trends Ecol Evol, 2003, 18: 358–365

    Article  Google Scholar 

  49. 49

    Twitchett R J. Climate change across the Permo-Triassic boundary. In: Williams M, Haywood A M, Gregory F J, et al, eds. Deep-Time Perspectives on Climate Change: Marrying the Signal from Computer models and Biological Proxies, The Micropalaeontological Society, Special Publications. London: The Geological Society, 2007. 191–200

    Google Scholar 

  50. 50

    Wignall P B. The End-Permian mass extinction— How bad did it get? Geobiology, 2007, 5: 303–309

    Article  Google Scholar 

  51. 51

    Looy C V, Brugman W A, Dilcher D L, et al. The delayed resurgence of equatorial forests after the Permian-Triassic ecologic crisis. Proc Nat Acad Sci USA 1999, 96: 13857–13862

    PubMed  CAS  Article  Google Scholar 

  52. 52

    Taylor E L, Taylor T N, Cuneo N R. The present is not the key to the past—A polar forest from the Permian of Antarctica. Science, 1992, 257: 1675–1677

    PubMed  Article  Google Scholar 

  53. 53

    Wignall P B, Twitchett R J. Oceanic anoxia and the end Permian mass extinction. Science, 1996, 272: 1155–1158

    PubMed  CAS  Article  Google Scholar 

  54. 54

    Wignall P B, Newton R. Contrasting deep-water records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a diachronous mass extinction. Palaios, 2003, 18: 153–167

    Article  Google Scholar 

  55. 55

    Baud A, Magaritz M, Holser W T. Permian-Triassic of the Tethys: Carbon isotope studies. Geol Rundsch, 1989, 78: 649–677

    CAS  Article  Google Scholar 

  56. 56

    Holser W T, Magaritz M. Cretaceous/Tertiary and Permian/Triassic boundary events compared. Geochim Cosmochim Acta, 1992, 56: 3297–3309

    CAS  Article  Google Scholar 

  57. 57

    Musashi M, Isozaki Y, Koike T, et al. Stable carbon isotope signature in mid-Panthalassa shallow-water carbonates across the Permo-Triassic boundary: Evidence for 13C-depleted superocean. Earth Planet Sci Lett, 2001, 191: 9–20

    CAS  Article  Google Scholar 

  58. 58

    Cao C Q, Wang W, Jin Y G. Carbon isotope excursions across the Permian-Triassic boundary in the Meishan section, Zhejiang Province, China. Chin Sci Bull, 2002, 47: 1125–1129

    CAS  Article  Google Scholar 

  59. 59

    Kaiho K, Chen Z Q, Ohashi T, et al. A negative carbon isotope anomaly associated with the earliest Lopingian (Late Permian) mass extinction. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 223: 172–180

    Article  Google Scholar 

  60. 60

    Korte C, Jasper T, Kozur H W, et al. δ18O and δ13C of Permian brachiopods: A record of seawater evolution and continental glaciation. Palaeogeogr Palaeoclimatol Palaeoecol, 2005, 224: 333–351

    Article  Google Scholar 

  61. 61

    Riccardi A, Kump L R, Arthur M A, et al. Carbon isotopic evidence for chemocline upward excursions during the end-Permian event. Palaeogeogr Palaeoclimatol Palaeoecol, 2007, 248: 73–81

    Article  Google Scholar 

  62. 62

    Xie S C, Pancost R D, Huang J H, et al. Changes in the global carbon cycle occurred as two episodes during the Permian-Triassic crisis. Geology, 2007, 35: 1083–1086

    CAS  Article  Google Scholar 

  63. 63

    Kaiho K, Chen Z Q, Kawahata H, et al. Close-up of the end-Permian mass extinction horizon recorded in the Meishan section, South China: Sedimentary, elemental, and biotic characterization and a negative shift of sulfate sulfur isotope ratio. Palaeogeogr Palaeoclimatol Palaeoecol, 2006, 239: 396–405

    Article  Google Scholar 

  64. 64

    Kaiho K, Kajiwara Y, Chen Z Q, et al. A sulfur isotope event at the end of the Permian. Chem Geol, 2006, 235: 33–47

    CAS  Article  Google Scholar 

  65. 65

    Kaiho K, Kajiwara Y, Nakano T, et al. End-Permian catastrophe by bolide impact: Evidence of a gigantic release of sulfur from the mantle. Geology, 2001, 29: 815–818

    CAS  Article  Google Scholar 

  66. 66

    Newton R J, Pevitt E L, Wignall P B, et al. Large shifts in the isotopic composition of seawater sulphate across the Permo-Triassic boundary in northern Italy. Earth Planet Sci Lett, 2004, 218: 331–345

    CAS  Article  Google Scholar 

  67. 67

    Grice K, Cao C Q, Love G D, et al. Photic zone euxinia during the Permian-Triassic superanoxic event. Science, 2005, 307: 706–709

    PubMed  CAS  Article  Google Scholar 

  68. 68

    Riccardi A L, Arthur M A, Kump L R. Sulfur isotopic evidence for chemocline upward excursions during the end-Permian mass extinction. Geochim Cosmochim Acta, 2006, 70: 5740–5752

    CAS  Article  Google Scholar 

  69. 69

    Kump L R, Pavlov A, Arthur M A. Massive release of hydrogen sulfide to the surface ocean and atmosphere during intervals of oceanic anoxia. Geology, 2005, 33: 397–400

    CAS  Article  Google Scholar 

  70. 70

    Thordarson T, Self S. Atmospheric and environmental effects of the 1783–1784 Laki eruption: A review and reassessment. J Geophys Res, 2003, 107, doi: 10.1029/2001JD002042

  71. 71

    Self S, Widdowson M, Thordarson T, et al. Volatile fluxes during flood basalt eruptions and potential effects on the global environment: A Deccan perspective. Earth Planet Sci Lett, 2006, 248: 517–531

    Article  CAS  Google Scholar 

  72. 72

    Self S, Blake S, Sharma K, et al. Sulfur and chlorine in Late Cretaceous Deccan magmas and eruptive gas release. Science, 2008, 319: 1654–1657

    PubMed  CAS  Article  Google Scholar 

  73. 73

    Thordarson T, Self S. The Roza Member, Columbia River Basalt Group: A gigantic pahoehoe lava flow field formed by endogenous processes. J Geophys Res, 1998, 103: 27411–27445

    Article  Google Scholar 

  74. 74

    McCartney K, Huffman A R, Tredoux M. A paradigm for endogenous causation of mass extinctions. In: Sharpton V L, Ward P D, eds. Global Catastrophes in Earth History. Special Paper, Geol Soc Amer, 1990, 247: 125–138

  75. 75

    Trenberth K E, Christy J R, Olson J G. Global atmospheric mass, surface pressure, and water vapor variations. J Geophys Res, 1988, 93(D9): 10925

    Article  Google Scholar 

  76. 76

    Archer D. Fate of fossil fuel CO2 in geologic time. J Geophys Res, 2005, 110(C9), doi: 10.1029/2004JC002625

  77. 77

    Lenton T M, Britton C. Enhanced carbonate and silicate weathering accelerates recovery from fossil fuel CO2 perturbations. Glob Biogeochem Cycle, 2006, 20, doi: 10.1029/2005GB002678

  78. 78

    Svensen H, Planke S, Malthe-Sørenssen, et al. Release of methane from a volcanic basin as a mechanism for initial Eocene global warming. Nature, 2004, 429: 542–545

    PubMed  CAS  Article  Google Scholar 

  79. 79

    Retallack G J, Jahren A H. Methane release from igneous intrusion of coal during Late Permian extinction events. J Geol, 2008, 116: 1–20

    CAS  Article  Google Scholar 

  80. 80

    Svensen H, Planke S, Chevallier L, et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet Sci Lett, 2007, 256: 554–566

    CAS  Article  Google Scholar 

  81. 81

    McCormick M P, Thomason L W, Trepte C R. Atmospheric effects of the Mt Pinatubo eruption. Nature, 1995, 373: 399–404

    CAS  Article  Google Scholar 

  82. 82

    Thordarson T, Self S. Sulfur, chlorine and fluorine degassing and atmospheric loading by the Roza eruption, Columbia River Basalt Group, Washington, USA. J Volcanol Geotherm Res, 1996, 74: 49–73

    CAS  Article  Google Scholar 

  83. 83

    Li C, Ripley E M, Naldrett A J, et al. Magmatic anhydrite assemblages in the plumbing system of the Siberian Traps. Geology, doi: 10.1130/G25355A.1

  84. 84

    Bluth G J S, Doiron S D, Schnetzler C C, et al. Global tracking of the SO2 clouds from the June, 1991 Mount Pinatubo eruptions. Geophys Res Lett, 1992, 19: 151–154

    CAS  Article  Google Scholar 

  85. 85

    Gu L, Baldocchi D D, Wofsy S C, et al. Response of a deciduous forest to the Mount Pinatubo eruption: Enhanced photosynthesis. Science, 2003, 299: 2035–2038

    PubMed  Article  CAS  Google Scholar 

  86. 86

    Turco R P, Toon O B, Ackerman T P, et al. The climatic effects of nuclear war. Sci Amer, 1984, 251: 23–33

    Article  Google Scholar 

  87. 87

    Robock A, Oman L, Stenchikov G L, et al. Climatic consequences of regional nuclear conflicts. Atmos Chem Phys Discussions, 2006, 6: 11817–11843

    Google Scholar 

  88. 88

    Toon O B, Turco R P, Robock A, et al. Atmospheric effects and societal consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism. Atmos Chem Phys Discussions, 2006, 6: 11745–11816

    Google Scholar 

  89. 89

    Highwood E J, Stevenson D S. Atmospheric impact of the 1783–1784 Laki eruption: Part II Climate effect of sulphate aerosol. Atmos Chem Phys, 2003, 3: 1177–1189

    CAS  Google Scholar 

  90. 90

    Chenet A L, Fluteau F, Courtillot V. Modelling massive sulphate aerosol pollution, following the large 1783 Laki basaltic eruption. Earth Planet Sci Lett, 2005, 236: 721–731

    CAS  Article  Google Scholar 

  91. 91

    Grattan J. Pollution and paradigms: Lessons from Icelandic volcanism for continental flood basalt studies. Lithos, 2005, 79: 343–353

    CAS  Article  Google Scholar 

  92. 92

    Rampino M R, Self S, Stothers R B. Volcanic winters. Annu Rev Earth Planet Sci, 1988, 16: 73–99

    CAS  Article  Google Scholar 

  93. 93

    Beerling D J, Harfoot M, Lomax B, et al. The stability of the stratospheric ozone layer during the end-Permian eruption of the Siberian Traps. Phil Trans Roy Soc Lond Ser A, 2007, 365: 1843–1866

    CAS  Article  Google Scholar 

  94. 94

    Visscher H, Looy C V, Collinson M E, et al. Environmental mutagenesis during the end-Permian ecological crisis. Proc Nat Acad Sci USA, 2004, 101: 12952–12956

    PubMed  CAS  Article  Google Scholar 

  95. 95

    Visscher H, Brinkhuis H, Dilcher D L, et al. The terminal Paleozoic fungal event: Evidence of terrestrial ecosystem destabilization and collapse. Proc Nat Acad Sci USA, 1996, 93: 2155–2158

    PubMed  CAS  Article  Google Scholar 

  96. 96

    Cohen A S, Coe A L, Kemp D B. The Late Palaeocene-Early Eocene and Toarcian (Early Jurassic) carbon isotope excursions: a comparison of their timescales, associated environmental changes, causes and consequences. J Geol Soc Lond, 2007, 164: 1093–1108

    CAS  Article  Google Scholar 

  97. 97

    Berner R A. Examination of hypotheses for the Permo-Triassic boundary extinction by carbon cycle modeling. Proc Nat Acad Sci USA, 2002, 99: 4172–4177

    PubMed  CAS  Article  Google Scholar 

  98. 98

    Krull A S, Retallack G J. δ13C depth profiles from paleosols across the Permian-Triassic boundary: Evidence for methane release. Geol Soc Am Bull, 2000, 112: 1459–1472

    CAS  Google Scholar 

  99. 99

    Dickens G R, O’Neil J R, Rea D K, et al. Dissociation of oceanic methane hydrate as a cause of the carbon-isotope excursion at the end of the Paleocene. Paleoceanography, 1995, 10: 965–971

    Article  Google Scholar 

  100. 100

    Hesselbo S P, Grocke D R, Jenkyns H C, et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature, 2000, 406: 392–395

    PubMed  CAS  Article  Google Scholar 

  101. 101

    Kvenvolden K A. Methane hydrate in the global organic carbon cycle. Terra Nova, 2002, 14: 302–306

    CAS  Article  Google Scholar 

  102. 102

    Milkov A V. Global estimates of hydrate-bound gas in marine sediments: How much is really out there? Earth Sci Rev, 2004, 66: 183–197

    CAS  Article  Google Scholar 

  103. 103

    McElwain J C, Wade-Murphy J, Hesselbo S P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature, 2005, 435: 479–482

    PubMed  CAS  Article  Google Scholar 

  104. 104

    Retallack G J. Comment—Contrasting deepwater records from the Upper Permian and Lower Triassic of South Tibet and British Columbia: Evidence for a diachronous mass extinction (Wignall and Newton, 2003). Palaios, 2004, 19: 101–102

    Article  Google Scholar 

  105. 105

    Twitchett R J, Looy C V, Morante R, et al. Rapid and synchronous collapse of marine and terrestrial ecosystems during the end-Permian biotic crisis. Geology, 2001, 29: 351–354

    CAS  Article  Google Scholar 

  106. 106

    Sluijs A, Brinkhuis H, Schouten S, et al. Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary. Nature, 2007, 450: 1218–1221

    PubMed  CAS  Article  Google Scholar 

  107. 107

    Payne J L, Kump L R. Evidence for recurrent Early Triassic massive volcanism from quantitative interpretation of carbon isotope fluctuations. Earth Planet Sci Lett, 2007, 256: 264–277

    CAS  Article  Google Scholar 

  108. 108

    Stern D I. Global Sulfur Emissions in the 1990’s. Renesselaer Polytechnic Institution Report 0311: Troy, New York, 2003, 32

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Andy Saunders.

Additional information

Supported by the Natural Environment Research Council, UK (Grant No. NE/C003276)

About this article

Cite this article

Saunders, A., Reichow, M. The Siberian Traps and the End-Permian mass extinction: a critical review. Chin. Sci. Bull. 54, 20–37 (2009).

Download citation


  • continental flood basalts
  • oceanic anoxia
  • radiometric dating
  • CO2
  • SO2