Skip to main content
Log in

Thermal vibration phenomenon of single phase lagging heat conduction and its thermodynamic basis

  • Articles/Energy Science & Technology
  • Published:
Chinese Science Bulletin

Abstract

In the present work it is shown that the single phase lagging heat conduction not only avoids the infinite heat propagation speed assumed by the conventional Fourier law, but also complies with Galilean principle of relativity. Therefore it is more advantageous than the Cattaneo-Vernotte model. Based on the single-phase-lagging heat conduction model, the condition for the occurrence of thermal vibration of heat conduction is established. In order to resolve the contradiction that the thermal vibration violates the second law of thermodynamics, the extended irreversible thermodynamics is improved and a generalized entropy definition is introduced. In the framework of the newly-developed extended irreversible thermodynamics the thermal vibration phenomena are consistent with the second law of thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao Z Y, Cao B Y, Zhu H Y, et al. State equation of phonon gas and conservation equations for phonon gas motion. 2007, 56(6): 3306–3312

    Google Scholar 

  2. Joseph D D, Preziosi L. Heat waves. Rev Mod Phys, 1989, 61: 41–73

    Article  Google Scholar 

  3. Joseph D D, Preziosi L. Addendum to the paper “heat waves” [Rev. Mod. Phys. 61, 41 (1989)]. Rev Mod Phys, 1990, 62: 375–391

    Article  Google Scholar 

  4. Tzou D Y. Macro-to Microscale Heat Transfer: The Lagging Behavior. Washington: Taylor & Francis, 1996

    Google Scholar 

  5. Tzou D Y. A unified field approach for heat conduction from micro-to macro-scales. J Heat Transfer, 1995, 117: 8–16

    Article  Google Scholar 

  6. Tzou D Y, Zhang Y S. An analytical study on the fast-transient process in small scales. Int J Eng Sci, 1995, 33: 1449–1463

    Article  CAS  Google Scholar 

  7. Chandrasekharaiah D S. Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev, 1998, 51: 705–729

    Article  Google Scholar 

  8. Chandrasekharaiah D S. Thermoelasticity with second sound: a review. Appl Mech Rev, 1986, 39: 355–376

    Google Scholar 

  9. Jou D, Casas-Vázquez J, Lebon G. Extended irreversible thermodynamics revisited (1988-1998). Rep Prog Phys, 1999, 62: 1035–1142

    Article  CAS  Google Scholar 

  10. Jou D, Casas-Vázquez J, Lebon G. Extended Irreversible Thermodynamics. Berlin: Springer, 2003

    Google Scholar 

  11. Lepri S, Livi R, Politi A. Thermal conduction in classical low-dimensional lattices. Phys Rep, 2003, 377: 1–80

    Article  CAS  Google Scholar 

  12. Li B, Wang J. Anomalous heat conduction and anomalous diffusion in one-dimensional lattices. Phys Rev Lett, 2003, 91: 044301

    Article  PubMed  CAS  Google Scholar 

  13. Li B, Casati G, Wang J, et al. Fourier law in the alternate-mass-hardcore potential chain. Phys Rev Lett, 2004, 92: 254301

    Article  PubMed  CAS  Google Scholar 

  14. Narayan O, Ramaswamy S. Anomalous heat conduction in one-dimensional momentum-conserving systems. Phys Rev Lett, 2002, 89: 200601

    Article  PubMed  CAS  Google Scholar 

  15. Savin A V, Tsironic G P, Zolotaryuk A V. Heat conduction in onedimensional systems with hard-point interparticle interactions. Phys Rev Lett, 2002, 88: 154301

    Article  PubMed  CAS  Google Scholar 

  16. Dhar A. Heat conduction in a one-dimensional gas of elastically colliding particles of unequal masses. Phys Rev Lett, 2001, 86: 3554–3557

    Article  PubMed  CAS  Google Scholar 

  17. Prosen T, Campbell D. Momentum conservation implies anomalous energy transport in 1D classical lattices. Phys Rev Lett, 2000, 84: 2857–2860

    Article  PubMed  CAS  Google Scholar 

  18. Giardiná C, Livi R, Politi A, et al. Finite thermal conductivity in 1D lattices. Phys Rev Lett, 2000, 84: 2144–2147

    Article  PubMed  Google Scholar 

  19. Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Transfer, 1993, 115: 835–841

    Article  CAS  Google Scholar 

  20. Tang D W, Araki N W. Wavelike, diffusive thermal responses of finite rigid slabs to high-speed heating of laser-pulses. Int J Heat Mass Transfer, 1999, 42: 855–860

    Article  CAS  Google Scholar 

  21. Han P, Tang D W, Zhou L P. Numerical analysis of two-dimensional lagging thermal behavior under short-pulse-laser heating on surface. Int J Engng Sci, 2006, 44: 1510–1519

    Article  Google Scholar 

  22. Tien C L, Majumdar A, Gerner F M. Microscale Energy Transport. Washington: Taylor & Francis, 1998

    Google Scholar 

  23. Cahill D G, Ford W K, Goodson K E, et al. Nanoscale thermal transport. J Appl Phys, 2003, 93: 793–818

    Article  CAS  Google Scholar 

  24. Guyer R A, Krumhansi J A. Solution of the linearized phonon Boltzmann equation. Phys Rev, 1966, 148: 766–778

    Article  CAS  Google Scholar 

  25. Kaganov M I, Lifshitz I M, Tanatarov M V. Relaxation between electrons and the crystalline lattice. Soviet Physics JETP, 1957, 4: 173–178

    CAS  Google Scholar 

  26. Qiu T Q, Tien C L. Heat transfer mechanisms during short-pulse laser heating of metals. J Heat Transfer, 1993, 115: 835–841

    Article  CAS  Google Scholar 

  27. Xu M T, Wang L Q. Dual-phase-lagging heat conduction based on Boltzmann transport equation. Int J Heat Mass Transfer, 2005, 48: 5616–5624

    Article  CAS  Google Scholar 

  28. Xu M T, Wang L Q. Thermal oscillation and resonance in dual-phaselagging heat conduction. Int J Heat Mass Transfer, 2002, 45: 1055–1061

    Article  Google Scholar 

  29. Wang L Q, Xu M T, Zhou X S. Well-posedness and solution structure of dual-phase-lagging heat conduction. Int J Heat Mass Transfer, 2002, 45: 1165–1171

    Article  Google Scholar 

  30. Wang L Q, Xu M T. Well-posedness of dual-phase-lagging heat conduction equation: higher dimensions. Int J Heat Mass Transfer, 2002, 45: 1165–1171

    Article  Google Scholar 

  31. Christov C I, Jordan P M. Heat conduction paradox involving second-sound propagation in moving media. Phys Rev Lett, 2005, 94: 154301

    Article  PubMed  CAS  Google Scholar 

  32. Tzou D Y. Damping and resonance characteristic of thermal waves. J Appl Mech, 1992, 59: 862–866

    Article  Google Scholar 

  33. Fan Q, Lu W Q. Some non-Fourier heat conduction characters under pulsed inlet conditions. Chin Sci Bull, 2004, 49(3): 225–230

    Article  Google Scholar 

  34. Barletta A, Zanchini E. Hyperbolic heat conduction and local equilibrium: a second law analysis. Int J Heat Mass Transfer, 1997, 40: 1007–1016

    Article  CAS  Google Scholar 

  35. Jou D, Criado-Sancho M. Thermodynamic stability and temperature overshooting in dual-phase-lag heat transfer. Physics Letters A, 1998, 248: 172–178

    Article  CAS  Google Scholar 

  36. Serdyukov S I. A new version of extended irreversible thermodynamics and dual-phase-lag model in heat transfer. Physics Letter A, 2001, 281: 16–20

    Article  CAS  Google Scholar 

  37. Györi I, Ladas G. Oscillation theory of delay differential equations with application. Oxford: Clarendon Press, 1991

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to MingTian Xu.

Additional information

Supported by the National Basic Research Program of China (Grant No. 2007CB206900)

About this article

Cite this article

Cheng, L., Xu, M. & Wang, L. Thermal vibration phenomenon of single phase lagging heat conduction and its thermodynamic basis. Chin. Sci. Bull. 53, 3597–3602 (2008). https://doi.org/10.1007/s11434-008-0506-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0506-z

Keywords

Navigation