Skip to main content
Log in

Thermodynamical consistency of the dual-phase-lag heat conduction equation

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

Dual-phase-lag equation for heat conduction is analyzed from the point of view of non-equilibrium thermodynamics. Its first-order Taylor series expansion is consistent with the second law as long as the two relaxation times are not negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ackerman, C.C., Bertman, B., Fairbank, H.A., Guyer, R.A.: Second sound in solid Helium. Phys. Rev. Lett. 16(18), 789–791 (1966)

    Article  ADS  Google Scholar 

  2. Afrin, N., Zhang, Y., Chen, J.K.: Thermal lagging in living biological tissue based on nonequilibrium heat transfer between tissue, arterial and venous bloods. Int. J. Heat Mass Transf. 54(11), 2419–2426 (2011)

    Article  Google Scholar 

  3. Afrin, N., Zhou, J., Zhang, Y., Tzou, D.Y., Chen, J.K.: Numerical simulation of thermal damage to living biological tissues induced by laser irradiation based on a generalized dual phase lag model. Numer. Heat Transf. Part A: Appl. 61(7), 483–501 (2012)

    Article  ADS  Google Scholar 

  4. Akbarzadeh, A.H., Pasini, D.: Phase-lag heat conduction in multilayered cellular media with imperfect bonds. Int. J. Heat Mass Transf. 75, 656–667 (2014)

    Article  Google Scholar 

  5. Antaki, P.J.: New interpretation of non-Fourier heat conduction in processed meat. J. Heat Transf. 127(2), 189–193 (2005)

    Article  Google Scholar 

  6. Berezovski, A., Ván, P.: Microinertia and internal variables. Contin Mech Thermodyn 28, 1027–1037 arXiv preprint arXiv:1504.03485 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  7. Both, S., Czél, B., Fülöp, T., Gróf, G., Gyenis, Á., Kovács, R., Ván, P., Verhás, J.: Deviation from the Fourier law in room-temperature heat pulse experiments. J. Non-Equilib. Thermodyn. 41(1), 41–48 (2016)

    Article  ADS  Google Scholar 

  8. Cattaneo, C.: Sur une forme de lequation de la chaleur eliminant le paradoxe dune propagation instantanee. Compt. Rendu. Hebd. Des Seances De L’Acad. Des Sci. 247(4), 431–433 (1958)

    MATH  Google Scholar 

  9. Ciancio, V., Cimmelli, V.A., Ván, P.: On the evolution of higher order fluxes in non-equilibrium thermodynamics. Math. Comput. Modell. 45, 126–136 (2007). Cond-mat/0407530

    Article  MathSciNet  Google Scholar 

  10. Dreher, M., Quintanilla, R., Racke, R.: Ill-posed problems in thermomechanics. Appl. Math. Lett. 22(9), 1374–1379 (2009)

    Article  MathSciNet  Google Scholar 

  11. Dreyer, W., Struchtrup, H.: Heat pulse experiments revisited. Contin. Mech. Thermodyn. 5, 3–50 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  12. Ezzat, M.A., El-Bary, A.A., Fayik, M.A.: Fractional Fourier law with three-phase lag of thermoelasticity. Mech. Adv. Mater. Struct. 20(8), 593–602 (2013)

    Article  Google Scholar 

  13. Fabrizio, M., Franchi, F.: Delayed thermal models: stability and thermodynamics. J. Therm. Stress. 37(2), 160–173 (2014)

    Article  Google Scholar 

  14. Fabrizio, M., Lazzari, B.: Stability and second law of thermodynamics in dual-phase-lag heat conduction. Int. J. Heat Mass Transf. 74, 484–489 (2014)

    Article  Google Scholar 

  15. Fabrizio, M., Lazzari, B., Tibullo, V.: Stability and thermodynamic restrictions for a dual-phase-lag thermal model. J. Non-Equilib. Thermodyn. (2017). Published Online:2017/01/10

  16. Guyer, R.A., Krumhansl, J.A.: Solution of the linearized phonon Boltzmann equation. Phys. Rev. 148(2), 766–778 (1966)

    Article  ADS  Google Scholar 

  17. Guyer, R.A., Krumhansl, J.A.: Thermal conductivity, second sound, and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148, 778–788 (1966)

    Article  ADS  Google Scholar 

  18. Herwig, H., Beckert, K.: Experimental evidence about the controversy concerning Fourier or non-Fourier heat conduction in materials with a nonhomogeneous inner structure. Heat Mass Transf 36(5), 387–392 (2000)

    Article  ADS  Google Scholar 

  19. Jackson, H.E., Walker, C.T., McNelly, T.F.: Second sound in NaF. Phys. Rev. Lett. 25(1), 26–28 (1970)

    Article  ADS  Google Scholar 

  20. Joseph, D.D., Preziosi, L.: Heat waves. Rev. Mod. Phys. 61(1), 41 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  21. Joseph, D.D., Preziosi, L.: Addendum to the paper on heat waves. Rev. Mod. Phys. 62(2), 375–391 (1990)

    Article  ADS  Google Scholar 

  22. Jou, D., Cimmelli, V.A.: Constitutive equations for heat conduction in nanosystems and non-equilibrium processes: an overview. Commun. Appl. Ind. Math. 7(2), 196–222 (2016)

    MathSciNet  MATH  Google Scholar 

  23. Kovács, R., Ván, P.: Generalized heat conduction in heat pulse experiments. Int. J. Heat Mass Transf. 83, 613–620 (2015)

    Article  Google Scholar 

  24. Lane, C.T., Fairbank, H.A., Fairbank, W.M.: Second sound in liquid Helium II. Phys. Rev. 71, 600–605 (1947)

    Article  ADS  Google Scholar 

  25. Liu, K.C., Chen, H.T.: Investigation for the dual phase lag behavior of bio-heat transfer. Int. J. Therm. Sci. 49(7), 1138–1146 (2010)

    Article  Google Scholar 

  26. Mariano, P.M.: Finite speed heat propagation as a consequence of microstructural events. In: 14th Joint European Thermodynamics Conference

  27. Matolcsi, T.: Ordinary Thermodynamics. Akadémiai Kiadó (Publishing House of the Hungarian Academy of Sciences), Budapest (2005)

  28. Maxwell, J.C.: On the dynamical theory of gases. Philos. Trans. R. Soc. Lond. 157, 49–88 (1867)

    Article  ADS  Google Scholar 

  29. Mitra, K., Kumar, S., Vedevarz, A., Moallemi, M.K.: Experimental evidence of hyperbolic heat conduction in processed meat. J. Heat Transf. 117(3), 568–573 (1995)

    Article  Google Scholar 

  30. Müller, I., Ruggeri, T.: Rational Extended Thermodynamics. Springer, Berlin (1998)

    Book  Google Scholar 

  31. Nyíri, B.: On the extension of the governing principle of dissipative processes to nonlinear constitutive equations. Acta Phys. Hung. 66(1), 19–28 (1989)

    Google Scholar 

  32. Nyíri, B.: On the entropy current. J. Non-Equilib. Thermodyn. 16(2), 179–186 (1991)

    Article  ADS  Google Scholar 

  33. Peshkov, V.: Second sound in Helium II. J. Phys. (Moscow) 8, 381 (1944)

  34. Quintanilla, R., Racke, R.: Qualitative aspects in dual-phase-lag heat conduction. Proc. R. Soc. Lond A: Math. Phys. Eng. Sci. 463(2079), 659–674 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  35. Roetzel, W., Putra, N., Das, S.K.: Experiment and analysis for non-Fourier conduction in materials with non-homogeneous inner structure. Int. J. Therm. Sci. 42(6), 541–552 (2003)

    Article  Google Scholar 

  36. Rogers, S.J.: Transport of heat and approach to second sound in some isotropically pure alkali-halide crystals. Phys. Rev. B 3(4), 1440 (1971)

    Article  ADS  Google Scholar 

  37. Rukolaine, S.A.: Unphysical effects of the dual-phase-lag model of heat conduction. Int. J. Heat Mass Transf. 78, 58–63 (2014)

    Article  Google Scholar 

  38. Rukolaine, S.A.: Unphysical effects of the dual-phase-lag model of heat conduction: higher-order approximations. Int. J. Therm. Sci. 113, 83–88 (2017)

    Article  Google Scholar 

  39. Sahoo, N., Ghosh, S., Narasimhan, A., Das, S.K.: Investigation of non-Fourier effects in bio-tissues during laser assisted photothermal therapy. Int. J. Therm. Sci. 76, 208–220 (2014)

    Article  Google Scholar 

  40. Sellitto, A., Cimmelli, V.A., Jou, D.: Mesoscopic Theories of Heat Transport in Nanosystems, vol. 6. Springer, Berlin (2016)

    MATH  Google Scholar 

  41. Taitel, Y.: On the parabolic, hyperbolic and discrete formulation of the heat conduction equation. Int. J. Heat Mass Transf. 15, 369–371 (1972)

    Article  Google Scholar 

  42. Tang, D., Araki, N., Yamagishi, N.: Transient temperature responses in biological materials under pulsed IR irradiation. Heat Mass Transf. 43(6), 579–585 (2007)

    Article  ADS  Google Scholar 

  43. Tzou, D.Y.: A unified field approach for heat conduction from macro- to micro-scales. J. Heat Transf. 117(1), 8–16 (1995)

    Article  Google Scholar 

  44. Tzou, D.Y.: Macro- to Micro-scale Heat Transfer: The Lagging Behavior. CRC Press, Boca Raton (1996)

    Google Scholar 

  45. Ván, P.: Other dynamic laws in thermodynamics. Phys. Essays 8(4), 457–465 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  46. Ván, P.: Generic stability of dissipative non-relativistic and relativistic fluids. J. Stat. Mech. Theory Exp. p. 02054 (2009). ArXiv:0811.0257

  47. Ván, P., Berezovski, A., Fülöp, T., Gróf, G., Kovács, R., Lovas, Á., Verhás, J.: Guyer–Krumhansl-type heat conduction at room temperature. EPL 118(5), 50,005 (2017). ArXiv:1704.00341v1

    Article  ADS  Google Scholar 

  48. Ván, P., Bíró, T.S.: Relativistic hydrodynamics - causality and stability. Eur. Phys. J. Spec. Top. 155, 201–212 (2008). ArXiv:0704.2039v2

    Article  ADS  Google Scholar 

  49. Verhás, J.: Thermodynamics and Rheology. Akadémiai Kiadó-Kluwer Academic Publisher, Alphen aan den Rijn (1997)

    MATH  Google Scholar 

  50. Vernotte, P.: Les paradoxes de la théorie continue de léquation de la chaleur. Comptes Rendus Hebd. Des Seances De L’Acad. Des Sci. 246(22), 3154–3155 (1958)

    MATH  Google Scholar 

  51. Ván, P.: Weakly nonlocal irreversible thermodynamics—the Guyer–Krumhansl and the Cahn–Hilliard equations. Phys. Lett. A 290(1–2), 88–92 (2001)

    Article  ADS  Google Scholar 

  52. Ván, P., Fülöp, T.: Universality in heat conduction theory—weakly nonlocal thermodynamics. Ann. der Phys. (Berlin) 524(8), 470–478 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  53. Wang, M., Yang, N., Guo, Z.Y.: Non-Fourier heat conductions in nanomaterials. J. Appl. Phys. 110(6), 064,310 (2011)

    Article  Google Scholar 

  54. Xu, F., Seffen, K.A., Lu, T.J.: Non-Fourier analysis of skin biothermomechanics. Int. J. Heat Mass Transf 51(9), 2237–2259 (2008)

    Article  Google Scholar 

  55. Zhang, Y.: Generalized dual-phase lag bioheat equations based on nonequilibrium heat transfer in living biological tissues. Int. J. Heat Mass Transf 52(21), 4829–4834 (2009)

    Article  Google Scholar 

  56. Zhou, J., Chen, J.K., Zhang, Y.: Dual-phase lag effects on thermal damage to biological tissues caused by laser irradiation. Comput. Biol. Med. 39(3), 286–293 (2009)

    Article  Google Scholar 

  57. Zhukovsky, K.V.: Exact solution of Guyer–Krumhansl type heat equation by operational method. Int. J. Heat Mass Transf 96, 132–144 (2016)

    Article  Google Scholar 

  58. Zhukovsky, K.V.: Operational approach and solutions of hyperbolic heat conduction equations. Axioms 5(4), 28 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Róbert Kovács.

Additional information

Communicated by Andreas Öchsner.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kovács, R., Ván, P. Thermodynamical consistency of the dual-phase-lag heat conduction equation. Continuum Mech. Thermodyn. 30, 1223–1230 (2018). https://doi.org/10.1007/s00161-017-0610-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-017-0610-x

Keywords

Navigation