Skip to main content
Log in

Progress in fabricating arrays of soft spherical vessels on mesoscale with spatial control

  • Review/Polymer Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Microarrays of spherical vessel-like colloids such as liposomes, polymerized vesicles and polyelectrolyte capsules may find diverse applications in bioanalysis, biosensing, and combinatorial chemistry, for their capabilities in encapsulating chemical species such as drugs, biomolecules, probes, polymers and nanoparticles. This review reports the advances on methods for fabricating microarrays of the various hollow colloids. Related strategies are described in detail, including patterning techniques, surface modification methods, and tethering approaches such as oligonucleotide hybridization, receptor-ligand binding, covalent coupling and electrostatic interaction. The preliminary developments of functionalities of these arrays serving as sensor chips, microcarriers and microreactors are summarized as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bally M, Halter M, Voros J, et al. Optical microarray biosensing techniques. Surf Interface Anal, 2006, 38(11): 1442–1458

    Article  CAS  Google Scholar 

  2. Howbrook D N, van der Valk A M, O’shaughnessy M C, et al. Developments in microarray technologies. Drug Discov Today, 2003, 8(14): 642–651

    Article  PubMed  CAS  Google Scholar 

  3. Kurian K M, Watson C J, Wyllie A H. DNA chip technology. J Pathol, 1999, 187(3): 267–271

    Article  PubMed  CAS  Google Scholar 

  4. van Hal N L W, Vorst O, van Houwelingen A M M L, et al. The application of DNA microarrays in gene expression analysis. J Biotechnol, 2000, 78(3): 271–280

    Article  PubMed  Google Scholar 

  5. Heller M J. DNA microarray technology: Devices, systems, and applications. Annu Rev Biomed Eng, 2002, 4: 129–153

    Article  PubMed  CAS  Google Scholar 

  6. Kumar A, Goel G, Fehrenbach E, et al. Microarrays: the technology, analysis and application. Eng Life Sci, 2005, 5(3): 215–222

    Article  CAS  Google Scholar 

  7. Zheng H, Rubner M F, Hammond P T. Particle assembly on patterned “plus/minus” polyelectrolyte surfaces via polymer-on-polymer stamping. Langmuir, 2002, 18(11): 4505–4510

    Article  CAS  Google Scholar 

  8. Lee I, Zheng H, Rubner M F, et al. Controlled cluster size in patterned particle arrays via directed adsorption on confined surfaces. Adv Mater, 2002, 14(8): 572–577

    Article  CAS  Google Scholar 

  9. Xia Y, Yin Y, Lu Y, et al. Template-assisted self-assembly of spherical colloids into complex and controllable structures. Adv Funct Mater, 2003, 13(12): 907–918

    Article  CAS  Google Scholar 

  10. Masuda Y, Itoh T, Itoh M, et al. Self-assembly patterning of colloidal crystals constructed from opal structure or NaCl structure. Langmuir, 2004, 20(13): 5588–5592

    Article  PubMed  CAS  Google Scholar 

  11. Yan X, Yao J, Lu G, et al. Fabrication of non-close-packed arrays of colloidal spheres by soft lithography. J Am Chem Soc, 2005, 127(21): 7688–7689

    Article  PubMed  CAS  Google Scholar 

  12. Varghese B, Cheong F C, Sindhu S, et al. Size selective assembly of colloidal particles on a template by directed self-assembly technique. Langmuir, 2006, 22(19): 8248–8252

    Article  PubMed  CAS  Google Scholar 

  13. Cong Y, Fu J, Zhang Z, et al. Fabrication of arrays of silver nanoparticle aggregates by microcontact printing and block copolymer nanoreactors. J Appl Polym Sci, 2006, 100(4): 2737–2743

    Article  CAS  Google Scholar 

  14. Jung J, Kim K W, Na K, et al. Fabrication of micropatterned gold nanoparticle arrays as a template for surface-initiated polymerization of stimuli-responsive polymers. Macromol Rapid Commun, 2006, 27(10): 776–780

    Article  CAS  Google Scholar 

  15. Tessier P M, Velev O D, Kalambur A T, et al. Structured metallic films for optical and spectroscopic applications via colloidal crystal templating. Adv Mater, 2001, 13(6): 396–400

    Article  CAS  Google Scholar 

  16. Ahn J S, Hammond P T, Rubner M F, et al. Self-assembled particle monolayers on polyelectrolyte multilayers: particle size effects on formation, structure, and optical properties. Colloids Surf A, 2005, 259(1–3): 45–53

    Article  CAS  Google Scholar 

  17. Li Y, Li C, Cho S O, et al. Silver hierarchical bowl-like array: synthesis, superhydrophobicity, and optical properties. Langmuir, 2007, 23(19): 9802–9807

    Article  PubMed  CAS  Google Scholar 

  18. Holtz J H, Asher S A. Polymerized colloidal crystal hydrogel films as intelligent chemical sensing materials. Nature, 1997, 389(6653): 829–832

    Article  PubMed  CAS  Google Scholar 

  19. Velev O D, Kaler E W. In situ assembly of colloidal particles into miniaturized biosensors. Langmuir 1999, 15(11): 3693–3698

    Article  CAS  Google Scholar 

  20. Goodey A, Lavigne J J, Savoy S M, et al. Development of multianalyte sensor arrays composed of chemically derivatized polymeric microspheres localized in micromachined cavities. J Am Chem Soc, 2001, 123(11): 2559–2570

    Article  PubMed  CAS  Google Scholar 

  21. Andersson H, van der Wijngaart W, Stemme G. Micromachined filter-chamber array with passive valves for biochemical assays on beads. Electrophoresis, 2001, 22(2): 249–257

    Article  PubMed  CAS  Google Scholar 

  22. Boukobza E, Sonnenfeld A, Haran G. Immobilization in surface-tethered lipid vesicles as a new tool for single biomolecules spectroscopy. J Phys Chem B, 2001, 105(48): 12165–12170

    Article  CAS  Google Scholar 

  23. Rhoades E, Gussakovsky E, Haran G. Watching proteins fold one molecule at a time. Proc Natl Acad Sci USA, 2003, 100(6): 3197–3202

    Article  PubMed  CAS  Google Scholar 

  24. Bokinsky G, Rueda D, Misra V K, et al. Single-molecule transition-state analysis of RNA folding. Proc Natl Acad Sci USA, 2003, 100(16): 9302–9307

    Article  PubMed  CAS  Google Scholar 

  25. Okumus B, Wilson T J, Lilley D M J, et al. Vesicle encapsulation studies reveal that single molecule ribozyme heterogeneities are intrinsic. Biophys J, 2004, 87(4): 2798–2806

    Article  PubMed  CAS  Google Scholar 

  26. Cisse I, Okumus B, Joo C, et al. Fueling protein-DNA interactions inside porous nanocontainers. Proc Natl Acad Sci USA, 2007, 104(31): 12646–12650

    Article  PubMed  CAS  Google Scholar 

  27. Kodadek T. Protein microarrays: Prospects and problems. Chem Biol, 2001, 8(2): 105–115

    Article  PubMed  CAS  Google Scholar 

  28. Templin M F, Stoll D, Schrenk M, et al. Protein microarray technology. Drug Discov Today, 2002, 7(15): 815–822

    Article  PubMed  CAS  Google Scholar 

  29. Zhu H, Snyder M. Protein chip technology. Curr Opin Chem Biol, 2003, 7(1): 55–63

    Article  PubMed  CAS  Google Scholar 

  30. Pollard H B, Srivastava M, Eidelman O, et al. Protein microarray platforms for clinical proteomics. Proteomics Clin Appl, 2007, 1(9): 934–952

    Article  CAS  Google Scholar 

  31. Jelinek R, Kolusheva S. Polymerized lipid vesicles as colorimetric biosensors for biotechnological applications. Biotech Adv, 2001, 19(2): 109–118

    Article  CAS  Google Scholar 

  32. Cooper M A. Advances in membrane receptor screening and analysis. J Mol Recognit, 2004, 17(4): 286–315

    Article  PubMed  CAS  Google Scholar 

  33. Kolusheva S, Molt O, Herm M, et al. Selective detection of catecholamines by synthetic receptors embedded in chromatic polydiacetylene vesicles. J Am Chem Soc, 2005, 127(28): 10000–10001

    Article  PubMed  CAS  Google Scholar 

  34. Vidic J, Pla-Roca M, Grosclaude J, et al. Gold surface functionalization and patterning for specific immobilization of olfactory receptors carried by nanosomes. Anal Chem, 2007, 79(9): 3280–3290

    Article  PubMed  CAS  Google Scholar 

  35. Tresset G, Takeuchi S. Utilization of cell-sized lipid containers for nanostructure and macromolecule handling in microfabricated devices. Anal Chem, 2005, 77(9): 2795–2801

    Article  PubMed  CAS  Google Scholar 

  36. Antipov A, Shchukin D, Fedutik Y, et al. Urease-catalyzed carbonate precipitation inside the restricted volume of polyelectrolyte capsules. Macromol Rapid Commun, 2003, 24(3): 274–277

    Article  CAS  Google Scholar 

  37. Bolinger P Y, Stamou D, Vogel H. Integrated nanoreactor systems: triggering the release and mixing of compounds inside single vesicles. J Am Chem Soc, 2004, 126(28): 8594–8595

    Article  PubMed  CAS  Google Scholar 

  38. Xia Y, Whitesides G M. Soft lithography. Angew Chem Int Ed, 1998, 37(5): 550–575

    Article  CAS  Google Scholar 

  39. Kumar A, Whitesides G M. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol “ink” followed by chemical etching. Appl Phys Lett, 1993, 63(14): 2002–2004

    Article  CAS  Google Scholar 

  40. Kumar A, Whitesides G M. Patterned condensation figures as optical diffraction gratings. Science, 1994, 263(5143): 60–62

    Article  PubMed  CAS  Google Scholar 

  41. Kumar A, Biebuyck H A, Whitesides G M. Patterning self-assembled monolayers: Applications in materials science. Langmuir, 1994, 10(5): 1498–1511

    Article  CAS  Google Scholar 

  42. Gregoriadis G. Engineering liposomes for drug delivery: Progress and problems. Trends Biotech, 1995, 13(12): 527–537

    Article  CAS  Google Scholar 

  43. Tseng W C, Huang L. Liposome-based gene therapy. Pharm Sci Tech Today, 1998, 1(5): 206–213

    Article  CAS  Google Scholar 

  44. Woodle M C, Scaria P. Cationic liposomes and nucleic acids. Curr Opin Colloid Interface Sci, 2001, 6(1): 78–84

    Article  CAS  Google Scholar 

  45. Torchilin V P. Liposomes as delivery agents for medical imaging. Mol Med Today, 1996, 2(6): 242–249

    Article  PubMed  CAS  Google Scholar 

  46. Niemeyer C M. Self-assembled nanostructures based on DNA: Towards the development of nanobiotechnology. Curr Opin Chem Biol, 2000, 4(6): 609–618

    Article  PubMed  CAS  Google Scholar 

  47. Svedhem S, Pfeiffer I, Larsson C, et al. Patterns of DNA-labeled and scFv-antibody-carrying lipid vesicles directed by material-specific immobilization of DNA and supported lipid bilayer formation on an Au/SiO2 template. ChemBioChem, 2003, 4(4): 339–343

    Article  PubMed  CAS  Google Scholar 

  48. Pfeiffer I, Hook F. Bivalent cholesterol-based coupling of oligonucleotides to lipid membrane assemblies. J Am Chem Soc, 2004, 126(33): 10224–10225

    Article  PubMed  CAS  Google Scholar 

  49. Städler B, Falconnet D, Pfeiffer I, et al. Micropatterning of DNA-tagged vesicles. Langmuir, 2004, 20(26): 11348–11354

    Article  PubMed  Google Scholar 

  50. Falconnet D, Koenig A, Assi F, et al. Combined photolithographic and molecular-assembly approach to produce functional micropatterns for applications in the biosciences. Adv Funct Mater, 2004, 14(8): 749–756

    Article  CAS  Google Scholar 

  51. Yoshina-Ishii C, Boxer S G. Arrays of mobile tethered vesicles on supported lipid bilayers. J Am Chem Soc, 2003, 125(13): 3696–3697

    Article  PubMed  CAS  Google Scholar 

  52. Yoshina-Ishii C, Miller G P, Kraft M L, et al. General method for modification of liposomes for encoded assembly on supported bilayers. J Am Chem Soc, 2005, 127(5): 1356–1357

    Article  PubMed  CAS  Google Scholar 

  53. Yoshina-Ishii C, Boxer S G. Controlling two-dimensional tethered vesicle motion using an electric field: interplay of electrophoresis and electro-osmosis. Langmuir, 2006, 22(5): 2384–2391

    Article  PubMed  CAS  Google Scholar 

  54. Chaize B, Nguyen M, Ruysschaert T, et al. Microstructured liposome array. Bioconjugate Chem, 2006, 17(1): 245–247

    Article  CAS  Google Scholar 

  55. Yang Q, Liu X Y, Miyake J, et al. Self-assembly and immobilization of liposomes in fused-silica capillary by avidin-biotin binding. Supramol Sci, 1998, 5(5–6): 769–772

    Article  CAS  Google Scholar 

  56. Yang Q, Liu X Y, Ajiki, S, et al. Avidin-biotin immobilization of unilamellar liposomes in gel beads for chromatographic analysis of drug-membrane partitioning. J Chromatogr B, 1998, 707(1–2): 131–141

    CAS  Google Scholar 

  57. Vermette P, Meagher L, Gagnon E, et al. Immobilized liposome layers for drug delivery applications: inhibition of angiogenesis. J Control Release, 2002, 80(1–3): 179–195

    Article  PubMed  CAS  Google Scholar 

  58. Stamou D, Duschl C, Delamarche E, et al. Self-assembled microarrays of attoliter molecular vessels. Angew Chem Int Ed, 2003, 42(45): 5580–5583

    Article  CAS  Google Scholar 

  59. Kalyankar N D, Sharma M K, Vaidya S V, et al. Arraying of intact liposomes into chemically functionalized microwells. Langmuir, 2006, 22(12): 5403–5411

    Article  PubMed  CAS  Google Scholar 

  60. Zhang L, Hong L, Yu Y, et al. Nanoparticle-assisted surface immobilization of phospholipid liposomes. J Am Chem Soc, 2006, 128(28): 9026–9027

    Article  PubMed  CAS  Google Scholar 

  61. Regen S L, Czech B, Singh A. Polymerized vesicles. J Am Chem Soc, 1980, 102(21): 6638–6640

    Article  CAS  Google Scholar 

  62. Papahadjopoulos D, Allen T M, Gabizon A, et al. Sterically stabilized liposomes: Improvements in pharmacokinetics and antitumor therapeutic efficacy. Proc Natl Acad Sci USA, 1991, 88(24): 11460–11464

    Article  PubMed  CAS  Google Scholar 

  63. Shamsai B M, Monbouquette H G. A23187-mediated Cd2+ uptake by highly stable, polymerized metal-sorbing vesicles. J Membrane Sci, 1997, 130(1–2): 173–181

    Article  CAS  Google Scholar 

  64. Lasic D D. Novel applications of liposomes. Trends Biotech, 1998, 16(7): 307–321

    Article  CAS  Google Scholar 

  65. Hubert D H W, Jung M, German A L. Vesicle templating. Adv Mater, 2000, 12(17): 1291–1294

    Article  CAS  Google Scholar 

  66. Stanish I, Singh A. Highly stable vesicles composed of a new chain-terminus acetylenic photopolymeric phospholipid. Chem Phys Lipids, 2001, 112(2): 99–108

    Article  PubMed  CAS  Google Scholar 

  67. Germain M, Grube S, Carriere V, et al. Composite nanocapsules: Lipid vesicles covered with several layers of crosslinked polyelectrolytes. Adv Mater, 2006, 18(21): 2868–2871

    Article  CAS  Google Scholar 

  68. Mahajan N, Lu R, Wu S T, et al. Patterning polymerized lipid vesicles with soft lithography. Langmuir, 2005, 21(7): 3132–3135

    Article  PubMed  CAS  Google Scholar 

  69. Kim J M, Lee Y B, Yang D H, et al. A polydiacetylene-based fluorescent sensor chip. J Am Chem Soc, 2005, 127(50): 17580–17581

    Article  PubMed  CAS  Google Scholar 

  70. Shim H Y, Lee S H, Ahn D J, et al. Micropatterning of diacetylenic liposomes on glass surfaces. Mater Sci Eng C, 2004, 24(1–2): 157–161

    Article  Google Scholar 

  71. Reichert A, Nagy J O, Spevak W, et al. Polydiacetylene liposomes functionalized with sialic acid bind and colorimetrically detect influenza virus. J Am Chem Soc, 1995, 117(2): 829–830

    Article  CAS  Google Scholar 

  72. Pan J J, Charych D. Molecular recognition and colorimetric detection of cholera toxin by poly(diacetylene) liposomes incorporating Gm1 ganglioside. Langmuir, 1997, 13(6): 1365–1367

    Article  CAS  Google Scholar 

  73. Ma Z, Li J, Liu M, et al. Colorimetric detection of Escherichia coli by polydiacetylene vesicles functionalized with glycolipid. J Am Chem Soc, 1998, 120(48): 12678–12679

    Article  CAS  Google Scholar 

  74. Ma Z, Li J, Jiang L, et al. Influence of the spacer length of glycolipid receptors in polydiacetylene vesicles on the colorimetric detection of Escherichia coli. Langmuir, 2000, 16(20): 7801–7804

    Article  CAS  Google Scholar 

  75. Gill I, Ballesteros A. Immunoglobulin-polydiacetylene sol-gel nanocomposites as solid-state chromatic biosensors. Angew Chem Int Ed, 2003, 42(28): 3264–3267

    Article  CAS  Google Scholar 

  76. Lee C H, Oh E H, Kim J M, et al. Immobilization of polydiacetylene vesicles on cellulose acetate butyrate (CAB)-coated substrates for self-assembled supramolecular sensor arrays. Colloids Surf A, 2008, 313–314: 500–503

    Article  Google Scholar 

  77. Donath E, Sukhorukov G B, Caruso F, et al. Novel hollow polymer shells by colloid-templated assembly of polyelectrolytes. Angew Chem Int Ed, 1998, 37(16): 2201–2205

    Article  Google Scholar 

  78. Caruso F, Caruso R A, Möhwald H. Nanoengineering of inorganic and hybrid hollow spheres by colloidal templating. Science, 1998, 282(5391): 1111–1114

    Article  PubMed  CAS  Google Scholar 

  79. Gao C, Leporatti S, Donath E, et al. Surface texture of poly(styrenesulfonate sodium salt) and poly(diallyldimethylammonium chloride) micron-sized multilayer capsules: A scanning force and confocal microscopy study. J Phys Chem B, 2000, 104(30): 7144–7149

    Article  CAS  Google Scholar 

  80. Peyratout C S, Dähne L. Tailor-made polyelectrolyte microcapsules: From multilayers to smart containers. Angew Chem Int Ed, 2004, 43(29): 3762–3783

    Article  CAS  Google Scholar 

  81. Sukhorukov G, Fery A, Mohwald H. Intelligent micro-and nano-capsules. Prog Polym Sci, 2005, 30(8–9): 885–897

    Article  CAS  Google Scholar 

  82. Decher G. Fuzzy nanoassemblies: Toward layered polymeric multi-composites. Science, 1997, 277(5330): 1232–1237

    Article  CAS  Google Scholar 

  83. Dähne L, Leporatti S, Donath E, et al. Fabrication of micro reaction cages with tailored properties. J Am Chem Soc, 2001, 123(23): 5431–5436

    Article  PubMed  Google Scholar 

  84. Balabushevich N G, Tiourina O P, Volodkin D V, et al. Loading the multilayer dextran sulfate/protamine microsized capsules with peroxidase. Biomacromolecules, 2003, 4(5): 1191–1197

    Article  PubMed  CAS  Google Scholar 

  85. Nolte M, Fery A. Coupling of individual polyelectrolyte capsules onto patterned substrates. Langmuir, 2004, 20(8): 2995–2998

    Article  PubMed  CAS  Google Scholar 

  86. Jiang X, Hammond P T. Selective deposition in layer-by-layer assembly: Functional graft copolymers as molecular templates. Langmuir, 2000, 16(22): 8501–8509

    Article  CAS  Google Scholar 

  87. Jiang X, Zheng H, Gourdin S, et al. Polymer-on-polymer stamping: Universal approaches to chemically patterned surfaces. Langmuir, 2002, 18(7): 2607–2615

    Article  CAS  Google Scholar 

  88. Park J, Hammond P T. Multilayer transfer printing for polyelectrolyte multilayer patterning: Direct transfer of layer-by-layer assembled micropatterned thin films. Adv Mater, 2004, 16(6): 520–525

    Article  CAS  Google Scholar 

  89. Nolte M, Fery A. Microstructuring of polyelectrolyte coated surfaces for directing capsule adhesion. IEEE Trans Nanobiosci, 2004, 3(1): 22–26

    Article  Google Scholar 

  90. Feng J, Wang B, Gao C, et al. Selective adsorption of microcapsules on patterned polyelectrolyte multilayers. Adv Mater, 2004, 16(21): 1940–1944

    Article  CAS  Google Scholar 

  91. Gao C, Wang B, Feng J, et al. Irreversible compression of polyelectrolyte multilayers. Macromolecules, 2004, 37(24): 8836–8839

    Article  CAS  Google Scholar 

  92. Wang B, Feng J, Gao C. Surface wettability of compressed polyelectrolyte multilayers. Colloids Surf A, 2005, 259(1–3): 1–5

    Google Scholar 

  93. Wang B, Gao C, Liu L. Loading and release behaviors of compressed polyelectrolyte multilayers for small dye molecules. J Phys Chem B, 2005, 109(11): 4887–4892

    Article  PubMed  CAS  Google Scholar 

  94. Wang B, Zhao Q, Wang F, et al. Biologically driven assembly of polyelectrolyte microcapsule patterns to fabricate microreactor arrays. Angew Chem Int Ed, 2006, 45(10): 1560–1563

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChangYou Gao.

Additional information

Supported by the Postdoc Foundation of Zhejiang Province, the National Natural Science Foundation of China (Grant Nos. 20434030, 20774084), the National Basic Research Program of China (Grant No. 2005CB623902) and the National Natural Science Funds for Distinguished Young Scholars of China (Grant No. 50425311)

About this article

Cite this article

Yang, J., Gao, C. Progress in fabricating arrays of soft spherical vessels on mesoscale with spatial control. Chin. Sci. Bull. 53, 3477–3490 (2008). https://doi.org/10.1007/s11434-008-0485-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0485-0

Keywords

Navigation