Skip to main content

High-Throughput Cell Assembly Featuring Heterogeneous Hydrogels Produced by Using Microfluidic Devices

  • Chapter
  • First Online:
Hyper Bio Assembler for 3D Cellular Systems
  • 682 Accesses

Abstract

We describe microfluidic devices developed for producing heterogeneous hydrogel materials including sandwich-type hydrogel fibers, hydrogel fibers having a highly complex cross-sectional morphology, stripe-patterned hydrogel sheets, and yarn-ball-shaped hydrogel beads. Cells encapsulated within these hydrogel materials exhibit behaviors that are distinct from those of cells examined using conventional cell-culture techniques. The cells are rapidly encapsulated in the hydrogel materials, and the cell-containing materials obtained could function as unit structures in constructing large tissues. Here, we also briefly discuss the use of hydrogel-based microfluidic devices in the preparation of multilayer blood-vessel models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dean DM, Napolitano AP, Youssef J, Morgan JR (2007) Rods, tori, and honeycombs: the directed self-assembly of microtissues with prescribed microscale geometries. FASEB J 21:4005

    Article  Google Scholar 

  2. Norotte C, Marga FS, Niklason LE, Forgacs G (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30:5910

    Article  Google Scholar 

  3. Anada T, Fukuda J, Sai Y, Suzuki O (2012) An oxygen-permeable spheroid culture system for the prevention of central hypoxia and necrosis of spheroids. Biomaterials 33:8430

    Article  Google Scholar 

  4. Chung BG, Lee KH, Khademhosseini A, Lee SH (2012) Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering. Lab Chip 12:45

    Article  Google Scholar 

  5. Nisisako T, Torii T, Takahashi T, Takizawa Y (2006) Synthesis of monodisperse bicoloured Janus particles with electrical anisotropy using a microfluidic co-flow system. Adv Mater 18:1152

    Article  Google Scholar 

  6. Tan WH, Takeuchi S (2007) Monodisperse alginate hydrogel microbeads for cell encapsulation. Adv Mater 19:2696

    Article  Google Scholar 

  7. Sugiura S, Oda T, Izumida Y, Aoyagi Y, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2005) Size control of calcium alginate beads containing living cells using micro-nozzle array. Biomaterials 26:3327

    Article  Google Scholar 

  8. Sugiura S, Oda T, Aoyagi Y, Matsuo R, Enomoto T, Matsumoto K, Nakamura T, Satake M, Ochiai A, Ohkohchi N, Nakajima M (2007) Microfabricated airflow nozzle for microencapsulation of living cells into 150 micrometer microcapsules. Biomed Microdev 9:91

    Article  Google Scholar 

  9. Yamada M, Sugaya S, Naganuma Y, Seki M (2012) Microfluidic synthesis of chemically and physically anisotropic hydrogel microfibers for guided cell growth and networking. Soft Matter 8:3122

    Article  Google Scholar 

  10. He W, Halberstadt CR, Gonsalves KE (2004) Lithography application of a novel photoresist for patterning of cells. Biomaterials 25:2055

    Article  Google Scholar 

  11. Zhang S, Yan L, Altman M, Lassle M, Nugent H, Frankel F, Lauffenburger DA, Whitesides GM, Rich A (1999) Biological surface engineering: a simple system for cell pattern formation. Biomaterials 20:1213

    Article  Google Scholar 

  12. Kalinina S, Gliemann H, Lopez-Garcia M, Petershans A, Auernheimer J, Schimmel T, Bruns M, Schambony A, Kessler H, Wedlich D (2008) Isothiocyanate-functionalized RGD peptides for tailoring cell-adhesive surface patterns. Biomaterials 29:3004

    Article  Google Scholar 

  13. Tourovskaia A, Figueroa-Masot X, Folch A (2005) Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies. Lab Chip 5:14

    Article  Google Scholar 

  14. Su J, Zheng Y, Wu H (2009) Generation of alginate microfibers with a roller-assisted microfluidic system. Lab Chip 9:996

    Article  Google Scholar 

  15. Sugiura S, Oda T, Aoyagi Y, Satake M, Ohkohchi N, Nakajima M (2008) Tubular gel fabrication and cell encapsulation in laminar flow stream formed by microfabricated nozzle array. Lab Chip 8:1255

    Article  Google Scholar 

  16. Lee KH, Shin SJ, Kim CB, Kim JK, Cho YW, Chung BG, Lee SH (2010) Microfluidic synthesis of pure chitosan microfibers for bio-artificial liver chip. Lab Chip 10:1328

    Article  Google Scholar 

  17. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974

    Article  Google Scholar 

  18. Pokrywczynska M, Drewa T, Jundzill A, Lysik J (2008) Alginate is not a good material for growth of rapidly proliferating cells. Transplant Proc 40:1664

    Article  Google Scholar 

  19. Kitagawa Y, Naganuma Y, Yajima Y, Yamada M, Seki M (2014) Patterned hydrogel microfibers prepared using multilayered microfluidic devices for guiding network formation of neural cells. Biofabrication 6:035011

    Google Scholar 

  20. Landry J, Bernier D, Ouellet C, Goyette R, Marceau N (1985) Spheroidal aggregate culture of rat liver cells: histotypic reorganization, biomatrix deposition, and maintenance of functional activities. J Cell Biol 101:914

    Article  Google Scholar 

  21. Dvir-Ginzberg M, Elkayam T, Aflalo ED, Agbaria R, Cohen S (2004) Ultrastructural and functional investigations of adult hepatocyte spheroids during in vitro cultivation. Tissue Eng 10:1806

    Article  Google Scholar 

  22. Fukuda J, Sakai Y, Nakazawa K (2006) Novel hepatocyte culture system developed using microfabrication and collagen/polyethylene glycol microcontact printing. Biomaterials 27:1061

    Article  Google Scholar 

  23. Brophy CM, Luebke-Wheeler JL, Amiot BP, Khan H, Remmel RP, Rinaldo P, Nyberg SL (2009) Rat hepatocyte spheroids formed by rocked technique maintain differentiated hepatocyte gene expression and function. Hepatology 49:578

    Article  Google Scholar 

  24. Fukuda J, Nakazawa K (2011) Hepatocyte spheroid arrays inside microwells connected with microchannels. Biomicrofluidics 5:22205

    Article  Google Scholar 

  25. Bhatia SN, Yarmush ML, Toner M (1997) Controlling cell interactions by micropatterning in co-cultures: hepatocytes and 3T3 fibroblasts. J Biomed Mater Res 34:189

    Article  Google Scholar 

  26. Corlu A, Ilyin G, Cariou S, Lamy I, Loyer P, Guguen-Guillouzo C (1997) The coculture: a system for studying the regulation of liver differentiation/proliferation activity and its control. Cell Biol Toxicol 13:235

    Article  Google Scholar 

  27. Tsuda Y, Kikuchi A, Yamato M, Nakao A, Sakurai Y, Umezu M, Okano T (2005) The use of patterned dual thermoresponsive surfaces for the collective recovery as co-cultured cell sheets. Biomaterials 26:1885

    Article  Google Scholar 

  28. Khetani SR, Bhatia SN (2007) Microscale culture of human liver cells for drug development. Nat Biotechnol 26:120

    Article  Google Scholar 

  29. Hui EE, Bhatia SN (2007) Silicon microchips for manipulating cell-cell interaction. Proc Natl Acad Sci U S A 104:5722

    Article  Google Scholar 

  30. Kidambi S, Sheng L, Yarmush ML, Toner M, Lee I, Chan C (2007) Patterned co-culture of primary hepatocytes and fibroblasts using polyelectrolyte multilayer templates. Macromol Biosci 7:344

    Article  Google Scholar 

  31. Elloumi Hannachi I Itoga K Kumashiro Y Kobayashi J Yamato M Okano T (2009) Fabrication of transferable micropatterned-co-cultured cell sheets with microcontact printing. Biomaterials 30:5427

    Article  Google Scholar 

  32. Harimoto M, Yamato M, Hirose M, Takahashi C, Isoi Y, Kikuchi A, Okano T (2002) Novel approach for achieving double-layered cell sheets co-culture: overlaying endothelial cell sheets onto monolayer hepatocytes utilizing temperature-responsive culture dishes. J Biomed Mater Res 62:464

    Article  Google Scholar 

  33. Kim K, Ohashi K, Utoh R, Kano K, Okano T (2012) Preserved liver-specific functions of hepatocytes in 3D co-culture with endothelial cell sheets. Biomaterials 33:1406

    Article  Google Scholar 

  34. Yamada M, Utoh R, Ohashi K, Tatsumi K, Yamatoc M, Okano T, Seki M (2012) Controlled formation of heterotypic hepatic micro-organoids in anisotropic hydrogel microfibers for long-term preservation of liver-specific functions. Biomaterials 33:8304

    Article  Google Scholar 

  35. Kidambi S, Yarmush RS, Novik E, Chao P, Yarmush ML, Nahmias Y (2009) Oxygen-mediated enhancement of primary hepatocyte metabolism, functional polarization, gene expression, and drug clearance. Proc Natl Acad Sci U S A 106:15714

    Article  Google Scholar 

  36. Cho CH, Park J, Nagrath D, Tilles AW, Berthiaume F, Toner M, Yarmush ML (2007) Oxygen uptake rates and liver-specific functions of hepatocyte and 3T3 fibroblast co-cultures. Biotechnol Bioeng 97:188

    Article  Google Scholar 

  37. Onoe H, Okitsu T, Itou A, Kato-Negishi M, Gojo R, Kiriya D, Sato K, Miura S, Iwanaga S, Kuribayashi-Shigetomi K, Matsunaga YT, Shimoyama Y, Takeuchi S (2013) Metre-long cell-laden microfibres exhibit tissue morphologies and functions. Nat Mater 12:584

    Article  Google Scholar 

  38. Kang E, Jeong GS, Choi YY, Lee KH, Khademhosseini A, Lee SH (2011) Digitally tunable physicochemical coding of material composition and topography in continuous microfibres. Nat Mater 10:877

    Article  Google Scholar 

  39. Panda P, Ali S, Lo E, Chung BG, Hatton TA, Khademhosseini A, Doyle PS (2008) Stop-flow lithography to generate cell-laden microgel particles. Lab Chip 8:1056

    Article  Google Scholar 

  40. Chung SE, Park W, Shin S, Lee SA, Kwon S (2008) Guided and fluidic self-assembly of microstructures using railed microfluidic channels. Nat Mater 7:581

    Article  Google Scholar 

  41. Miyama A, Yamada M, Sugaya S, Seki M (2013) A droplet-based microfluidic process to produce yarn-ball-shaped hydrogel microbeads. RSC Adv 3:12299

    Article  Google Scholar 

  42. Sugaya S, Yamada M, Hori A, Seki M (2013) Microfluidic production of single micrometer-sized hydrogel beads utilizing droplet dissolution in a polar solvent. Biomicrofluidics 7:54120

    Article  Google Scholar 

  43. Yuan B, Jin Y, Sun Y, Wang D, Sun J, Wang Z, Zhang W, Jiang X (2012) A strategy for depositing different types of cells in three dimensions to mimic tubular structures in tissues. Adv Mater 24:890

    Article  Google Scholar 

  44. Santos MI, Tuzlakoglu K, Fuchs S, Gomes ME, Peters K, Unger RE, Piskin E, Reis RL, Kirkpatrick CJ (2008) Endothelial cell colonization and angiogenic potential of combined nano- and micro-fibrous scaffolds for bone tissue engineering. Biomaterials 29:4306

    Article  Google Scholar 

  45. Pataky K, Braschler T, Negro A, Renaud P, Lutolf MP, Brugger J (2012) Microdrop printing of hydrogel bioinks into 3D tissue-like geometries. Adv Mater 24:391

    Article  Google Scholar 

  46. Iwase M, Yamada M, Seki M (2012) Construction of vascular tissues via multilayer cell deposition inside hydrogel microchannels. Proc MicroTAS 2012:572

    Google Scholar 

  47. Ling Y, Rubin J, Deng Y, Huang C, Demirci U, Karp JM, Khademhosseini A (2007) A cell-laden microfluidic hydrogel. Lab Chip 7:756

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. S. Sugaya, Dr. R. Utoh, Mr. M. Iwase, Mr. Y. Kitagawa, Ms. E. Yamada, Mr. Y. Nagamuna, Ms. A. Kobayashi, Ms. A. Miyama, Mr. Y. Yajima, Ms. A. Hori for their contribution in conducting experiments. This study was supported in part by Grants-in-aid for Scientific Research (KAKENHI 23106007, 23700554, and 30546784) from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masumi Yamada .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer Japan

About this chapter

Cite this chapter

Yamada, M., Seki, M. (2015). High-Throughput Cell Assembly Featuring Heterogeneous Hydrogels Produced by Using Microfluidic Devices. In: Arai, T., Arai, F., Yamato, M. (eds) Hyper Bio Assembler for 3D Cellular Systems. Springer, Tokyo. https://doi.org/10.1007/978-4-431-55297-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-4-431-55297-0_8

  • Published:

  • Publisher Name: Springer, Tokyo

  • Print ISBN: 978-4-431-55296-3

  • Online ISBN: 978-4-431-55297-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics