Skip to main content
Log in

Fabrication of visible-light responsive S-F-codoped TiO2 nanotubes

  • Articles
  • Environmental Chemistry
  • Published:
Chinese Science Bulletin

Abstract

Fabrication and S-F-codoping of TiO2 nanotubes were carried out by a one-step electrochemical anodization process to extend the photoresponse of TiO2 to the visible-light region. The prepared samples were annealed in air and detected by SEM, XRD, XPS and UV-vis DRS spectrophotometer. The results showed that the average tube diameter of the nanotubes was 150 nm and the average tube length was 400 nm. The doped TiO2 nanotubes exhibited strong absorption in visible-light region. Photoelectrocatalytic degradation efficiency of 4-CP over S-F-codoped TiO2 nanotubes was 39.7% higher than that of only-F-doped sample. Moreover, sulfur and fluorine codoped into substitutional sites of TiO2 had been proven to be indispensable for strong response and high photocatalytic activity under visible light, as assessed by XPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zhang X W, Zhou M H, Lei L C. Preparation of photocatalytic TiO2 coatings of nanosized particles on activated carbon by AP-MOCVD. Carbon, 2005, 43: 1700–1708

    Article  CAS  Google Scholar 

  2. Zhang X W, Zhou M H, Lei L C. Preparation of anatase TiO2 supported on alumina by different metal organic chemical vapor deposition methods. Appl Cata A-General, 2005, 282: 285–293

    Article  CAS  Google Scholar 

  3. Asahi R, Morikawa T, Ohwaki T, et al. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science, 2001, 293(5528): 269–271

    Article  PubMed  CAS  Google Scholar 

  4. Li D, Ohashi N, Hishita S, et al. Origin of visible-light-driven photocatalysis: A comparative study on N/F-doped and N-F-codoped TiO2 powders by means of experimental characterizations and theoretical calculations. J Solid State Chem, 2005, 178: 3293–3302

    Article  CAS  Google Scholar 

  5. Umebayashi T, Yamaki T, Tanaka S, et al. Visible light-induced degradation of methylene blue on S-doped TiO2. Chem Lett, 2003, 32(4): 330–331

    Article  CAS  Google Scholar 

  6. Ohno T, Mitsui T, Matsumura M. Photocatalytic activity of S-doped TiO2 photocatalyst under visible light. Chem Lett, 2003, 32(4): 364–365

    Article  CAS  Google Scholar 

  7. Yu J C, Yu J, Ho W, et al. Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem Mater, 2002, 14: 3808–3816

    Article  CAS  Google Scholar 

  8. Nukumizu K, Nunoshige J, Takata T, et al. TiNxOyFz as a stable photocatalyst for water oxidation in visible light (< 570 nm). Chem Lett, 2003, 32(2): 196–197

    Article  CAS  Google Scholar 

  9. Gong D, Grimes C A, Varghese O K, et al. Titanium oxide nanotubess prepared by anodic oxidation. J Mater Res, 2001, 16: 3331–3334

    Article  CAS  Google Scholar 

  10. Ruan C M, Paulose M, Varghese O K, et al. Enhanced photoelectrochemical-response in highly ordered TiO2 nanotubes-arrays anodized in boric acid containing electrolyte. Sol Energ Mater Sol C, 2006, 90: 1283–1295

    Article  CAS  Google Scholar 

  11. Quan X, Yang S G, Ruan X L, et al. Preparation of titania nanotubess and their environmental applications as electrode. Environ Sci Technol, 2005, 39: 3770–3775

    Article  PubMed  CAS  Google Scholar 

  12. Ghicov A, Tsuchiya H, Macak J M, et al. Titanium oxide nanotubess prepared in phosphate electrolytes. Electrochem Commun, 2005, 7(5): 505–509

    Article  CAS  Google Scholar 

  13. Umebayashi T, Yamaki T, Itoh H, et al. Band gap narrowing of titanium dioxide by sulfur doping. Appl Phys Lett, 2002, 81(3): 454–456

    Article  CAS  Google Scholar 

  14. Umebayashi T, Yamaki T, Yamamoto S, et al. Sulfur-doping of rutile-titanium dioxide by ion implantation: Photocurrent spectroscopy and first-principles band calculation studies. J Appl Phys, 2003, 93(9): 5156–5160

    Article  CAS  Google Scholar 

  15. Sanjines R, Tang H, Berge H. Electronicstructure of anatase TiO2 oxide. J Appl Phys, 1994, 75(5): 2945–2954

    Article  CAS  Google Scholar 

  16. Yu J C, Ho W, Yu J, et al. Efficient visible-light-induced photocatalytic disinfection on sulfur-doped nanocrystalline titania. Environ Sci Technol, 2005, 39(4): 1175–1179

    Article  PubMed  CAS  Google Scholar 

  17. Li D, Haneda H, Hishita S, et al. Fluorine-doped TiO2 powders prepared by spray pyrolysis and their improved photocatalytic activity for decomposition of gas-phase acetaldehyde. J Fluorine Chem, 2005, 126: 69–77

    Article  CAS  Google Scholar 

  18. Zhuang H F, Lin C J, Lai Y K, et al. Some critical structure factors of titanium oxide nanotubes in its photocatalytic activity. Environ Sci Technol, 2007, 41(13): 4735–4740

    Article  PubMed  CAS  Google Scholar 

  19. Lee J Y, Park J, Cho J H. Electronic properties of N-and C-doped TiO2. Appl Phys Lett, 2005, 87(1): 011904

    Google Scholar 

  20. Batzill M, Morales E H, Diebold U. Influence of nitrogen doping on the defect formation and surface properties of TiO2 rutile and anatase. Phys Rev Lett, 2006, 96(2): 026103

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to LeCheng Lei.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos 90610005, 20576120, 20336030 and U0633003), the National “863” Program (Grant No. 2007AA06Z339), and Science and Technology Bureau of Zhejiang Province (Grant No.2007C13061)

About this article

Cite this article

Chen, X., Su, Y., Zhang, X. et al. Fabrication of visible-light responsive S-F-codoped TiO2 nanotubes. Chin. Sci. Bull. 53, 1983–1987 (2008). https://doi.org/10.1007/s11434-008-0279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0279-4

Keywords

Navigation