Skip to main content
Log in

Systematic insertion mutagenesis of GntR family transcriptional regulator genes in Sinorhizobium meliloti

  • Articles
  • Molecular Genetics
  • Published:
Chinese Science Bulletin

Abstract

GntR-type transcriptional regulators regulate the most diverse biological processes in bacteria. Although GntR-type transcriptional regulators consist of the second largest family of transcriptional regulators in Sinorhizobium meliloti, little is known about their functions. In this study, we investigated 54 putative genes encoding GntR family of transcriptional regulators in S. meliloti Rm1021. Secondary structure analysis of the C-terminal domain of these putative transcriptional regulators indicated that thirty-seven were members of the FadR subfamily, ten of the HutC subfamily and five of the MocR subfamily. The remaining two did not fall into any specific subfamily category, and may form two new subfamilies. The 54 gntR genes were mutagenized by plasmid insertion mutagenesis to investigate their roles. We found that, of the 54 mutants, only the gtrA1 and gtrB1 mutants had slower growth rates and cell maximal yields on both rich medium and minimal medium, and lower cell motility on swarming plate than wild type Rm1021. All mutants, with the exception of gtrA1 and gtrB1, can establish effective symbioses with alfalfa. Plants inoculated with gtrA1 and gtrB1 mutants grew shorter than those inoculated with wild type, and formed relatively smaller, round and light pink nodules, which were mainly located on lateral roots. And there was an abnormal increase in the number of nodules induced by both mutants. These results suggested that the gtrA1 and gtrB1 mutants were symbiotically deficient. Our work presents a global overview of GntR-like transcriptional regulators involved in symbiosis in S. meliloti, and provides new insight into the functions of GntR-like transcriptional regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Galibert F, Finan T M, Long S R, et al. The composite genome of the legume symbiont Sinorhizobium meliloti. Science, 2001, 293: 668–672

    Article  PubMed  CAS  Google Scholar 

  2. Honma M A, Ausubel F M. Rhizobium meliloti has three functional copies of the nodD symbiotic regulatory gene. Proc Natl Acad Sci USA, 1987, 84: 8558–8562

    Article  PubMed  CAS  Google Scholar 

  3. Mulligan J T, Long S R. A family of activator genes regulates expression of Rhizobium meliloti nodulation genes. Genetics, 1989, 122: 7–18

    PubMed  CAS  Google Scholar 

  4. Swanson J A, Mulligan J T, Long S R. Regulation of syrM and nodD3 in Rhizobium meliloti. Genetics, 1993, 134: 435–444

    PubMed  CAS  Google Scholar 

  5. Kondorosi E, Pierre M, Cren M, et al. Identification of NolR, a negative transacting factor controlling the nod regulon in Rhizobium meliloti. J Mol Biol, 1991, 222: 885–896

    Article  PubMed  CAS  Google Scholar 

  6. Luo L, Yao SY, Becker A, et al. Two new Sinorhizobium meliloti LysR-Type transcriptional regulators required for nodulation. J Bacteriol, 2005, 187: 4562–4572

    Article  PubMed  CAS  Google Scholar 

  7. Rigali S, Derouaux A, Giannotta F, et al. Subdivision of the helix-turn-helix GntR family of bacterial regulators in the FadR, HutC, MocR, and YtrA subfamilies. J Biol Chem, 2001, 277: 12507–12515

    Article  PubMed  Google Scholar 

  8. Haydon D J, Guest J R. A new family of bacterial regulatory proteins. FEMS Microbiol Lett, 1991, 79: 291–296

    Article  CAS  Google Scholar 

  9. Lee M H, Scherer M, Rigali S, et al. PlmA, a new member of the GntR family, has plasmid maintenance functions in Anabaena sp. strain PCC 7120. J Bacteriol, 2003, 85: 4315–4325

    Article  Google Scholar 

  10. Fujita Y, Fujita T. The gluconate operon gnt of Bacillus subtilis encodes its own transcriptional negative regulator. Proc Natl Acad Sci USA, 1987, 84: 4524–4528

    Article  PubMed  CAS  Google Scholar 

  11. Yoshida K I, Fujita Y, Ehrlich S D. An operon for a putative ATP-binding cassette transport system involved in acetoin utilization of Bacillus subtilis. J Bacteriol, 2000, 182: 5454–5461

    Article  PubMed  CAS  Google Scholar 

  12. Sa-Nogueira I, Mota L J. Negative regulation of L-arabinose metabolism in Bacillus subtilis: Characterization of the araR (araC) gene. J Bacteriol, 1997, 179: 1598–1608

    PubMed  CAS  Google Scholar 

  13. Seo J W, Ohnishi Y, Hirata A, et al. ATP-binding cassette transport system involved in regulation of morphological differentiation in response to glucose in Streptomyces griseus. J Bacteriol, 2002, 184: 91–103

    Article  PubMed  CAS  Google Scholar 

  14. Hillerich B, Westpheling J. A new GntR family transcriptional regulator in Streptomyces coelicolor is required for morphogenesis and antibiotic production and controls transcription of an ABC transporter in response to carbon source. J Bacteriol, 2006, 188: 7477–7487

    Article  PubMed  CAS  Google Scholar 

  15. Hoskisson P A, Rigali S, Fowler K, et al. DevA, a GntR-like transcriptional regulator required for development in Streptomyces coelicolor. J Bacteriol, 2006, 188: 5014–5023

    Article  PubMed  CAS  Google Scholar 

  16. Casali N, White A M, Riley L W. Regulation of the Mycobacterium tuberculosis mce1 operon. J Bacteriol, 2006, 188: 441–449

    Article  PubMed  CAS  Google Scholar 

  17. Haine V, Sinon A, Van Steen F, et al. Systematic targeted mutagenesis of Brucella melitensis 16M reveals a major role for GntR regulators in the control of virulence. Infect Immun, 2005, 73: 5578–5586

    Article  PubMed  CAS  Google Scholar 

  18. Finan T M, Hartweig E, LeMieux K, et al. General transduction in Rhizobium meliloti. J Bacteriol, 1984, 159: 120–124

    PubMed  CAS  Google Scholar 

  19. Leigh J A, Signer E R, Walker G C. Exopolysaccharide deficient mutants of Rhizobium meliloti that form ineffective nodules. Pro Natl Acad Sci USA, 1985, 82: 6231–6235

    Article  CAS  Google Scholar 

  20. Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: A laboratory manual. 2nd ed. New York: Cold Spring Harbor Laboratory Press, 1989

    Google Scholar 

  21. Vincent J M. A manual for the practical study of root-nodule bacteria. IBP Handbook No. 75. Oxford: Blackwells, 1970

    Google Scholar 

  22. Stanier R Y, Ingraham J L, Wheelis M L, et al. The Microbial World. 5th ed. Englewood Cliffs: Prentice-Hall, 1986

    Google Scholar 

  23. Ames O, Schluederberg S A, Bergman K. Behavioural mutants of Rhizobium meliloti. J Bacteriol, 1980, 141: 722–727

    PubMed  CAS  Google Scholar 

  24. Fraysse N, Couderc F, Poinsot V. Surface polysaccharide involvement in establishing the rhizobium-legume symbiosis. Eur J Biochem, 2003, 270: 1365–1380

    Article  PubMed  CAS  Google Scholar 

  25. Leigh J A, Reed J W, Hanks J F, et al. Rhizobium meliloti mutants that fail to succinylatetheir calcofluor-binding exopolysaccharide are defective in nodule invasion. Cell, 1987, 51: 579–587

    Article  PubMed  CAS  Google Scholar 

  26. Vasse J, de Billy F, Camut S, et al. Correlation between ultrastructural differentiation of bacteroids and nitrogen fixation in alfalfa nodules. J Bacteriol, 1990, 172: 4295–4306

    PubMed  CAS  Google Scholar 

  27. Chun Y L, Stacey G. A Bradyrhizobium japonicum gene essential for nodulation competitiveness is differentially regulated from two promoters. Mol Plant Microbe Interact, 1994, 7: 248–255

    PubMed  CAS  Google Scholar 

  28. Sanjuan J, Olivares J. Implication of nifA in regulation of genes located on a Rhizobium meliloti cryptic plasmid that affect nodulation efficiency. J Bacteriol, 1987, 171: 4154–4161

    Google Scholar 

  29. Bittinger M A, Milner J L, Saville B J, et al. RosR, a determinant of nodulation competitiveness in Rhizobium etli. Mol Plant-Microbe Interact, 1997, 10: 180–186

    Article  PubMed  CAS  Google Scholar 

  30. Barsomian G D, Urzainqui A, Lohman K, et al. Rhizobium meliloti mutants unable to synthesize anthranilate display a novel symbiotic phenotype. J Bacteriol, 1992, 174: 4416–4426

    PubMed  CAS  Google Scholar 

  31. Fry J, Wood M, Poole P S. Investigation of myo-inositol catabolism in Rhizobium leguminosarum bv. viciae and its effect on nodulation competitiveness. Mol Plant-Microbe Interact, 2001, 14: 1016–1025

    Article  PubMed  CAS  Google Scholar 

  32. Glenn A R, Arwas R, McKay I A, et al. Fructose metabolism in wild type, fructokinase-negative and revertant strains of Rhizobium leguminosarum. J Gen Microbiol, 1984, 130: 231–237

    CAS  Google Scholar 

  33. Lambert A, Østerås M, Mandon K, et al. Fructose uptake in Sinorhizobium meliloti is mediated by a high-affinity ATP-binding cassette transport system. J Bacteriol, 2001, 183: 4709–4717

    Article  PubMed  CAS  Google Scholar 

  34. Davidson A L, Chen J. ATP-binding cassette transporters in bacteria. Annu Rev Biochem, 2004, 73: 241–268

    Article  PubMed  CAS  Google Scholar 

  35. Kelly D J, Thomas G H. The tripartite ATP-independent periplasmic (TRAP) transporters of bacteria and archaea. FEMS Microbiol Rev, 2001, 25: 405–424

    Article  PubMed  CAS  Google Scholar 

  36. Mauchline T H, Fowler J E, East A K, et al. Mapping the Sinorhizobium meliloti 1021 solute-binding protein-dependent transportome. Proc Natl Acad Sci USA, 2006, 103: 17933–17938

    Article  PubMed  CAS  Google Scholar 

  37. Jensen J B, Peters N K, Bhuvaneswari T V. Redundancy in periplasmic binding protein-dependent transport systems for trehalose, sucrose, and maltose in Sinorhizobium meliloti. J Bacteriol, 2002, 184: 2978–2986

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang YanZhang.

Additional information

Supported by the National Natural Science Foundation of China (Grant No. 30570132), Shanghai Municipal Committee of Science and Technology (Grant No. 063958002) and the National Basic Research Program of China (Grant No. CB108901)

About this article

Cite this article

Yu, A., Chen, A., Wang, Y. et al. Systematic insertion mutagenesis of GntR family transcriptional regulator genes in Sinorhizobium meliloti . Chin. Sci. Bull. 53, 215–226 (2008). https://doi.org/10.1007/s11434-008-0017-y

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-008-0017-y

Keywords

Navigation