Skip to main content
Log in

Change in aggregation state of a porphyrin-perylene-diimide dyad induced by trifluoroacetic acid

  • Articles
  • Materials Chemistry
  • Published:
Chinese Science Bulletin

Abstract

The molecular aggregation state of a porphyrin-perylenediimide dyad can be changed by treating with trifluoroacetic acid. Transmittance electron microscopy (TEM) images revealed that lamella microstructures were formed when the dyad precipitated from neutral solvent, but spherical nano-particles were obtained when precipitating from acidic solution. X-ray diffraction patterns showed that the lamella microstructures and the nanoparticles were polycrystalline and amorphous solids, respectively. By using rational perylenediimide and porphyrin as reference compounds, careful analyses on the UV-visible spectra of the dyad and the references under different conditions were conducted and the results demonstrated that both the porphyrin and perylendiimide subunits of the dyad took J-aggregation in neutral solvent, but after being treated with trifluoroacetic acid and chloroform solution, the perylenediimide subunit changed to an H-aggregation while the porphyrin subunits changed to a random packing mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller M A, Lammi R K, Prathapan S, et al. A tightly coupled linear array of perylene, bisporphyrin, and phthalocyanine units that functions as a photoinduced energy transfer cascade. J Org Chem, 2000, 65: 6634–6649

    Article  PubMed  CAS  Google Scholar 

  2. Prathapan S, Yang S I, Seth J, et al. Synthesis and excited state photodynamics of perylene-porphyrin dyads. 1, Parallel energy and charge transfer via a diphenylethyne liker. J Phys Chem B, 2001, 105(34): 8237–8248

    Article  CAS  Google Scholar 

  3. Yang S I, Prathapan S, Miller M A, et al. Synthesis and excited state photodynamics in perylene-porphyrin dyads. 2, Effects of porphyrin metalation state on the energy-transfer, charge transfer, and deactivation channels. J Phys Chem B, 2001, 105(34): 8249–8258

    Article  CAS  Google Scholar 

  4. Yang S I, Lammi R K, Prathapan S, et al. Synthesis and excited state photodynamics of perylene-porphyrin dyads. 3, Effects of perylene, liker and connectivity on ultra-fast energy transfer. J Mater Chem, 2001, 11: 2420–2430

    Article  CAS  Google Scholar 

  5. O’Neil M P, Niemczyk M P, Svec W A, et al. Picosecond optical switching based on biphotonic excitation of an electron donor-acceptor-donor molecule. Science, 1992, 257(5074): 63–65

    Article  PubMed  CAS  Google Scholar 

  6. Debreczeny M P, Svec W A, Wasielewski M R. Optical control of photogenerated ion pair lifetimes: an approach to a molecular switch. Science, 1996, 274(5256): 584–586

    Article  CAS  Google Scholar 

  7. von der Boom T, Hayes R T, Zhao Y, et al. Charge transport in photofunctional nanoparticles self-assembled from zinc-5,10,15,20-tetrakis(perylenediimide)porphyrin building blocks. J Am Chem Soc, 2002, 124(32): 9582–9590

    Article  PubMed  CAS  Google Scholar 

  8. Li X Y, Sinks L E, Rybtchinski B, et al. Ultrafast aggregate-to-aggregate energy transfer with in self-assembled light harvesting columns of zinc phthalocyanine tetrakis(perylenediimide). J Am Chem Soc, 2004, 126(35): 10810–10811

    Article  PubMed  CAS  Google Scholar 

  9. Fuller M J, Sink L E, Rybtchinski B, et al. Ultrafast photoinduced charge separation resulting from self-assembly of a green perylene-based dye into π-stacked arrays. J Phys Chem A, 2005, 109(6): 970–975

    Article  PubMed  CAS  Google Scholar 

  10. Kelley R F, Tauber M J, Wasielewski M R. Linker controlled energy and charge transfer within chlorophyll trefoils. Angew Chem Int Ed, 2006, 45(47): 7979–7982

    Article  CAS  Google Scholar 

  11. Tauber M J, Kelley R F, Giaimo J M, et al. Electron hopping in π-stacked covalent and self-assembled perylene-diimide observed by ENDOR spectroscopy. J Am Chem Soc, 2006, 128(6): 1782–1783

    Article  PubMed  CAS  Google Scholar 

  12. Ahrens M J, Kelley R F, Dance Z E X, et al. Photoinduced charge separation in self-assemled pentamers of 5,10,15,20-tetrakis (perylenediimide) porphyrin. Phys Chem Chem Phys, 2007, 9(12): 1469–1478

    Article  PubMed  CAS  Google Scholar 

  13. Kelley R F, Shin W S, Rybtchinski B, et al. Photoinitiated charge transport in supremolecular assemblies of 1,7-N,N′-tetrakis(zinc-porphyrin)-perylene-3,4:9,10-bis(dicarboximide). J Am Chem Soc, 2007, 129(11): 3173–3181

    Article  PubMed  CAS  Google Scholar 

  14. Yang X G, Sun J Z, Wang M, et al. A more efficient synthetic route to perylene-porphyrin arrays. Chin Chem Lett, 2003, 14(11): 1105–1108

    CAS  Google Scholar 

  15. Sun J Z, Yang X G, Li H Y, et al. An acid-base controlled fluorescence switch based on a free-base-porphyrin-perylene-diimide molecular array. Chem J Chin Univ, 2004, 25(11): 2148–2152

    CAS  Google Scholar 

  16. Sun J, Yang X, Wang M. Thin films of porphyrin-perylene molecular array fabricated by electrophoresis methodology. Chin Sci Bull, 2005, 50(19): 2157–2160.

    Article  CAS  Google Scholar 

  17. Struijk C W, Sieval A B, Dakhorst J E J, et al. Liquid crystalline perylene diimides: Architecture and charge carrier mobilities. J Am Chem Soc, 2000, 122(45): 11057–11066

    Article  CAS  Google Scholar 

  18. Cormier R A, Gregg B A. Self-organization in thin films of liquid crystalline perylene-diimides. J Phys Chem B, 1997, 101(51): 11004–11006

    Article  CAS  Google Scholar 

  19. Liu S G, Sui G D, Cormier R A, et al. Self-organizing liquid crystal perylene diimide thin films: Spectroscopy, crystallinity and molecular orientation. J Phys Chem B, 2002, 106(6): 1307–1315

    Article  CAS  Google Scholar 

  20. Sui G, Orbulescu J, Mabrouki M, et al. Self-assembly of liquid crystal semiconductor molecules at the air/water interface. J Phys Chem B, 2002, 106(36): 9335–9340

    Article  CAS  Google Scholar 

  21. Rybtchinski B, Sinks L E, Wasielewski M R. Combining light-harvesting and charge separation in a self-assembled artificial photosynthetic system based on perylenediimide chromophores. J Am Chem Soc, 2004, 126(39): 12268–12269

    Article  PubMed  CAS  Google Scholar 

  22. Hoebin F J M, Jonkheijm P, Meijer E W, et al. About supramolecular self-assemblies of π-conjugated systems. Chem Rev, 2005, 105(4): 1491–1546

    Article  CAS  Google Scholar 

  23. Kasha K, Rawls H R, El-Bayoumi. The exciton model in molecular spectroscopy. Pure Appl Chem, 1965, 11: 371–390

    Article  CAS  Google Scholar 

  24. Choi M Y, Pollard J A, Webb M A, et al. Counterion-dependent excitonic spectra of tetra(p-carboxyphenyl)porphyrin aggregates in acidic aqueous solution. J Am Chem Soc, 2003, 125(3): 810–820

    Article  PubMed  CAS  Google Scholar 

  25. Okada S, and Segawa H. Substituent-controlled excitation in J-aggregates of protonated water-insoluble porphyrins. J Am Chem Soc, 2003, 125(9): 2792–2796

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sun JingZhi.

Additional information

Supported by the National Natural Science Foundation of China (Grant Nos. 50573065 and 50573019) and the Natural Science Foundation of Zhejiang Province of China (Grant No. Z406018)

About this article

Cite this article

Xie, B., Cao, Y., Sun, J. et al. Change in aggregation state of a porphyrin-perylene-diimide dyad induced by trifluoroacetic acid. Chin. Sci. Bull. 53, 209–214 (2008). https://doi.org/10.1007/s11434-007-0496-2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0496-2

Keywords

Navigation