Skip to main content
Log in

Facile synthesis of naphthalene diimide (NDI) derivatives: aggregation-induced emission, photophysical and transport properties

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Naphthalene diimide (NDI) derivatives have been synthesized via facile synthesis process and comprehensively studied their photophysical, thermal-activated conductivity and electron transport properties. Four different substituents at imide nitrogen, i.e. 2,6 diisopropyl phenyl (iPrP-NDI), diphenylmethylene (DPM-NDI), 2-nitrophenyl (NO2P-NDI) and pentafluorophenyl (PFP-NDI) have been studied for their effect on self-assembling, photophysical and electronic properties. Electrochemical analysis has been performed to evaluate their redox properties and calculation of HOMO and LUMO energy levels. These NDI derivatives have been analysed for their aggregation behaviour and aggregation-induced emission (AIE) by absorption and emission spectroscopy in fresh and aged solutions in different polarity solvents without using any external additive. Among all, NO2P-NDI showed strong AIE property in fresh as well as aged samples. Conductivity of NDI derivatives has been measured as a function of temperature where the highest conductivity ~ 10−4 S−1 cm−1 was obtained at 200 °C in iPrP-NDI. SEM images clearly showed different types of assembly formation in solid state for all the materials. All the materials showed excellent electron mobility of the order of 10−4 to 10−3 cm2 V−1 s−1 measured following the standard protocol of SCLC model. Such NDI materials with excellent photophysical and electronic properties are potential candidates to be used as n-type semiconductor material in organic electronics. NO2P-NDI which also shows aggregation-induced emission can be used on OLEDs or other bio-medical applications as luminescent material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5(1–8), 5293 (2014)

    CAS  Google Scholar 

  2. S.W. Kim, Y. Wang, H. You, W. Lee, T. Michinobu, B.J. Kim, Impact of incorporating nitrogen atoms in naphthalenediimide-based polymer acceptors on the charge generation, device performance, and stability of all-polymer solar cells. ACS Appl. Mater. Interfaces 11, 35896–35903 (2019)

    CAS  Google Scholar 

  3. B. Fan, Z. Zeng, W. Zhong, L. Ying, D. Zhang, M. Li, F. Peng, N. Li, F. Huang, Y. Cao, Optimizing microstructure morphology and reducing electronic losses in 1 cm2 polymer solar cells to achieve efficiency over 15%. ACS Energy Lett. 4, 2466–2472 (2019)

    CAS  Google Scholar 

  4. C. Lee, S. Lee, G.-U. Kim, W. Lee, B.J. Kim, Recent advances, design guidelines, and prospects of all-polymer solar cells. Chem. Rev. 119, 8028–8086 (2019)

    CAS  Google Scholar 

  5. T.W. Kelley, P.F. Baude, C. Gerlach, D.E. Ender, D. Muyred, M.A. Haase, D.E. Vogel, S.D. Thesis, Recent progress in organic electronics: materials, devices, and processes. Chem. Mater. 16, 4413–4422 (2004)

    CAS  Google Scholar 

  6. D. Dastan, P.U. Londhe, N.B. Chaure, Characterization of TiO2 nanoparticles prepared using different surfactants by sol–gel method. J. Mater. Sci. 25, 3473–3479 (2014)

    CAS  Google Scholar 

  7. D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. Atom. Mol. Cond. Nano Phys. 2, 109–114 (2015)

    Google Scholar 

  8. W. Hu, T. Li, X. Liu, D. Dastan, K. Ji, P. Zhao, Pumped upconversion chromaticity modulation in Er3 + doped double perovskite LiYMgWO6 for anti-counterfeiting. J. Alloys Compd. (2019). https://doi.org/10.1016/j.jallcom.2019.152933

    Article  Google Scholar 

  9. D. Dastan, N.B. Chaure, Influence of surfactants on TiO2 nanoparticles grown by sol–gel technique. J. Mater. Mech. Manufact. 2, 21–24 (2014)

    CAS  Google Scholar 

  10. D. Dastan, S.L. Panahi, N.B. Chaure, Characterization of titania thin films grown by dip-coating technique. J. Mater. Sci. 27, 12291–12296 (2016)

    CAS  Google Scholar 

  11. F. Würthner, M. Stolte, Naphthalene and perylene diimides for organic transistors. Chem. Commun. 47, 5109–5115 (2011)

    Google Scholar 

  12. W. Jiang, Y. Li, Z. Wang, Tailor-made rylene arrays for high performance n-channel semiconductors. Acc. Chem. Res. 47, 3135–3147 (2014)

    CAS  Google Scholar 

  13. T.M. Fifueira-Duarte, K. Mullen, P-yrene-based materials for organic electronics. Chem. Rev. 111, 7260–7314 (2011)

    Google Scholar 

  14. X. Zhan, A. Facchetti, S. Barlow, T.J. Marks, M.A. Ratner, M.R. Wasielewski, S.R. Marder, Rylene and related diimides for organic electronics. Adv. Mater. 23, 268–284 (2011)

    CAS  Google Scholar 

  15. B.A. Jones, A. Facchetti, M.R. Wasielewski, T.J. Marks, Tuning orbital energetics in arylene diimide semiconductors. materials design for ambient stability of n-type charge transport. J. Am. Chem. Soc. 129, 15259–15278 (2007)

    CAS  Google Scholar 

  16. M.A. Kobaisi, S.V. Bhisale, K. Latham, A.M. Raynor, S.V. Bhosale, Functional naphthalene diimides: synthesis, properties, and applications. Chem. Rev. 116, 11685–11796 (2016)

    CAS  Google Scholar 

  17. M. Sommer, Conjugated polymers based on naphthalene diimide for organic electronics. J. Mater. Chem. C 2, 3088–3098 (2014)

    CAS  Google Scholar 

  18. K. Sreenath, J.R. Allen, M.W. Davidson, L. Zhu, A FRET-based indicator for imaging mitochondrial zinc ions. Chem. Commun. 47, 11730–11732 (2011)

    CAS  Google Scholar 

  19. Z. Hu, R.L. Arrowsmith, J.A. Tyson, V. Mirabello, H. Ge, I.M. Eggleston, S.W. Botchway, G.D. Pantosand, S.I. Pascu, A fluorescent Arg–Gly–Asp (RGD) peptide–naphthalenediimide (NDI) conjugate for imaging integrin αvβ3 in vitro. Chem. Commun. 51, 6901–6904 (2015)

    CAS  Google Scholar 

  20. Q. Li, M. Peng, H. Li, C. Zhong, L. Zhang, X. Cheng, X. Peng, Q. Wang, J. Qin, Z. Li, A new, “Turn-on” naphthalenedimide-based chemosensor for mercury ions with high selectivity: successful utilization of the mechanism of twisted intramolecular charge transfer, near-ir fluorescence, and cell images. Org. Lett. 14, 2094–2097 (2012)

    CAS  Google Scholar 

  21. L. Zong, Y. Song, Q. Li, Z. Li, A “turn-on” fluorescence probe towards copper ions based on core-substitued naphthalene diimide. Sens. Actuator B 226, 239–244 (2016)

    CAS  Google Scholar 

  22. S.V. Bhosale, C.H. Jani, C.H. Lalander, S.J. Langford, I. Nerush, J.G. Shapter, D. Villamaina, E. Vauthey, Supramolecular construction of vesicles based on core-substituted naphthalene diimide appended with triethyleneglycol motifs. Chem. Commun. 47, 8226 (2011)

    CAS  Google Scholar 

  23. T. Mondal, T. Sakurai, S. Yoneda, S. Seki, S. Ghosh, Macromolecules 48, 879 (2015)

    CAS  Google Scholar 

  24. S. Maniam, H.F. Higginbotham, T.D.M. Bell, S.J. Langford, Harnessing brightness in naphthalene diimides. Chem. Eur. J. 25, 7044–7057 (2019)

    CAS  Google Scholar 

  25. S. Alp, S. Erten, C. Karapire, B. Koz, A.O. Doroshenko, S. Icli, Photoinduced energy–electron transfer studies with naphthalene diimides. J. Photochem. Photobiol. A 135, 103–110 (2000)

    CAS  Google Scholar 

  26. N. Kumari, S. Naqvi, R. Kumar, Naphthalene diimide self-assembled ribbons with high electrical conductivity and mobility without doping. J. Mater. Sci. 53, 4046–4055 (2018)

    CAS  Google Scholar 

  27. L. Zong, Y. Xie, C. Wang, J.-R. Li, Q. Li, Z. Li, From ACQ to AIE: the suppression of the strongp–pinteraction of naphthalene diimide derivativesthrough the adjustment of their flexible chains. Chem. Commun. 52, 11496–11499 (2016)

    CAS  Google Scholar 

  28. Y. Chen, J.W.Y. Lam, R.T.K. Kwok, B. Liu, B.Z. Tang, Aggregation-induced emission: fundamental understanding and future developments. Mater. Horiz. 6, 428–433 (2019)

    CAS  Google Scholar 

  29. S.M. Wagalgave, S.V. Bhosale, R.S. Bhosale, A.L. Puyad, J.-Y. Chen, J.-L. Li, R.A. Evans, A. Gupta, S.V. Bhosale, An efficient, three-dimensional non-fullerene electron acceptor: functionalizing tetraphenylethylene with naphthalene diimides. Mater. Chem. Front. 3, 1231–1237 (2019)

    CAS  Google Scholar 

  30. D.D. La, S.V. Bhosale, L.A. Jones, S.V. Bhosale, Tetraphenylethylene-based AIE-active probes for sensing applications. ACS Appl. Mater. Interfaces 10, 12189–12216 (2018)

    CAS  Google Scholar 

  31. S. Naqvi, N. Vasishtha, M. Kumar, R. Kumar, Electron transport and ultrafast spectroscopic studies of new methanofullerenes bearing heteroatom. New J. Chem. 43, 15626–15635 (2019)

    CAS  Google Scholar 

  32. S. Naqvi, N. Gupta, N. Kumari, J. Garg, R. Kumar, Synthesis and charge transport protperties of new methanofullerenes. New J. Chem. 41, 1933–1939 (2017)

    CAS  Google Scholar 

  33. J.C. Blakesley, F.A. Castro, W. Kylberg, G.F.A. Dibb, C. Arantes, R. Valaski, M. Cremona, J.S. Kim, J.-S. Kim, Towards reliable charge-mobility benchmark measurements for organic semiconductors. Org. Electron. 15, 1263–1272 (2014)

    CAS  Google Scholar 

  34. P. Gawrys, D. Djurado, J. Rimarcik, A. Kornet, D. Boudinet, J.-M. Verilhac, V. Lukes, I. Wielgus, M. Zagorska, A. Porn, Effect of N-substituents on redox, optical, and electronic properties of naphthalene bisimides used for field-effect transistors fabrication. J. Phys. Chem. B 114, 1803–1809 (2010)

    CAS  Google Scholar 

  35. C.M. Cardona, W. Li, A.E. Kaifer, D. Stockdale, G.C. Bazan, Electrochemical considerations for determining absolute frontier orbital energy levels of conjugated polymers for solar cell applications. Adv. Mater. 23, 2367–2371 (2011)

    CAS  Google Scholar 

  36. Q.U. Khan, G. Tian, L. Bao, S. Qi, D. Wu, Highly uniform supramolecular nano-films derived from carbazole-containing perylene diimide via surface-supported self-assembly and their electrically bistable memory behaviour. New J. Chem. 42, 11506–11515 (2018)

    CAS  Google Scholar 

  37. V. Sharma, K. Sahoo, N. Varghese, K. Mohanta, A.L. Koner, Synthesis and photovoltaic application of NIR-emitting perylene-monoimide dyes with large Stokes-shift. RSC Adv. 9, 30448–30452 (2019)

    CAS  Google Scholar 

  38. L. Chen, C. Li, K. Mullen, Beyond perylene diimides: synthesis, assembly and function of higher rylene chromophores. J. Mater. Chem. C 2, 1938–1956 (2014)

    CAS  Google Scholar 

  39. S. Amiralaei, D. Uzan, H. Icil, Chiral substituent containing perylene monoanhydride monoimide and its highly soluble symmetrical diimide: synthesis, photophysics and electrochemistry from dilute solution to solid state. Photochem. Photobiol. Sci. 7, 936–947 (2008)

    CAS  Google Scholar 

  40. M.R. Molla, S. Ghosh, Structural variations on selfassembly and macroscopic properties of 1,4,5,8-naphthalene-diimide chromophores. Chem. Mater. 23, 95–105 (2011)

    CAS  Google Scholar 

  41. H. Kar, S. Ghosh, J-aggregation of a sulfur-substituted naphthalenediimide (NDI) with remarkably bright fluorescence. Chem. Commun. 52, 8818–8821 (2016)

    CAS  Google Scholar 

  42. M. Kumar, S.J. George, Green fluorescent organic nanoparticles by self-assembly induced enhanced emission of a naphthalene diimide bolaamphiphile. Nanoscale 3, 2130–2133 (2011)

    CAS  Google Scholar 

  43. J.M. Szarko, B.S. Rolczynski, S.J. Lou, T. Xu, J. Strzalka, T.J. Marks, L. Yu, L.X. Chen, Photovoltaic function and exciton/charge transfer dynamics in a highly efficient semiconducting copolymer. Adv. Funct. Mater. 24, 10–26 (2014)

    CAS  Google Scholar 

  44. F. Liu, W. Zhao, J.R. Tumbleston, C. Wang, Y. Gu, C. wAng, A.L. Briseno, H. Ade, T.P. Russell, Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 4(1–9), 1301377 (2014)

    Google Scholar 

  45. H. Wang, H.-Y. Wang, B.-R. Gao, L. Wang, Z.-Y. Yang, X.-B. Du, Q.-D. Chen, J.F. Song, H.-B. Sun, Exciton diffusion and charge transfer dynamics in nano phase-separated P3HT/PCBM blend films. Nanoscale 3, 2280–2285 (2011)

    CAS  Google Scholar 

  46. M.R. Wasielewski, Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–19201 (2009)

    CAS  Google Scholar 

  47. M.B. Avinash, T. Govindraju, Engineering molecular organization of naphthalenediimides: large nanosheets with metallic conductivity and attoliter containers. Adv. Funct. Mater. 21, 3875–3882 (2011)

    CAS  Google Scholar 

  48. M. Rahaman, D. Gehrig, L. Roy, V. Kamm, A. Paul, F. Laquai, S. Ghosh, Self assembly of carboxylic acid appended naphthalene diimide derivatives with tunable luminescent color and electrical conductivity. Chem. Eur. J. 20, 760–771 (2014)

    Google Scholar 

  49. S. Abbasi, M. Hasanpour, F. Ahmadpoor, M. Sillanpää, D. Dastan, A. Achour, Application of the statistical analysis methodology for photodegradation of methyl orange using a new nanocomposite contining modified TiO2 semiconductor with SnO2. Int. J. Environ. Anal. Chem. (2019). https://doi.org/10.1080/03067319.2019.1662414

    Article  Google Scholar 

  50. X. Zhu, J. Yang, D. Dastan, H. Garmestani, R. Fan, Z. Shi, Fabrication of core-shell structured Ni@BaTiO3 scaffolds for polymer composites with ultrahigh dielectric constant and low loss. Compos. Part A 125, 105521 (2019)

    Google Scholar 

  51. X.-T. Yin, W.-D. Zhou, J. Li, Q. Wang, F.-Y. Wu, D. Dastan, D. Wang, H. Garmestani, X.-M. Wang, Ş. Ţălu, A highly sensitivity and selectivity Pt-SnO2 nanoparticles for sensing applications at extremely low level hydrogen gas detection. J. Alloys Compd. 805, 229–236 (2019)

    CAS  Google Scholar 

  52. X.-T. Yin, W.-D. Zhou, J. Li, P. Lv, Q. Wang, D. Wang, F-y Wu, D. Dastan, H. Garmestani, Z. Shi, Ş. Ţălu, Tin dioxide nanoparticles with high sensitivity and selectivity for gas sensors at sub ppm level of hydrogen gas detection. J. Mater. Sci. 30, 14687–14694 (2019)

    CAS  Google Scholar 

  53. M.B. Avinash, K. Swathi, K.S. Narayan, T. Govindraju, Molecular architectonics of naphthalenediimides for efficient structure-property correlation. ACS Appl. Mater. Interfaces 8, 8678–8685 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

Authors acknowledge DST-SERI program for funding. SN and KB thanks to CSIR and MA to UGC for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachana Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2302 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumari, N., Naqvi, S., Ahuja, M. et al. Facile synthesis of naphthalene diimide (NDI) derivatives: aggregation-induced emission, photophysical and transport properties. J Mater Sci: Mater Electron 31, 4310–4322 (2020). https://doi.org/10.1007/s10854-020-02986-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02986-8

Navigation