Skip to main content
Log in

Novel protein detection method based on proximity-dependent polymerase reaction and aptamers

  • Articles
  • Analytical Chemistry
  • Published:
Chinese Science Bulletin

Abstract

In recent years, specific detection of proteins is one of the hot issues about aptamers in proteomics. Here we reported a simple, sensitive and specific proximity-dependent protein assay with dual DNA aptamers. Thrombin was used as the model protein, and two aptamer probes with complementary sequence at 3′-end were designed for the two distinct epitopes of the protein. Association of the two aptamers with thrombin resulted in stable hybrids due to the proximity of 3′-end, then polymerase reaction was induced. The amount of obtained dsDNA was indicated using the fluorescence dye Sybr Green I. The results showed that the initial velocity of polymerase reaction had a positive correlation with concentration of thrombin. The advantages of this dual-aptamer-based approach included simple and flexible design of aptamer probes, high selectivity and high sensitivity. The detection limit was 6.9 pmol/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nowak R. Entering the postgenome era. Science, 1995, 270(5235): 368–369, 371

    Article  PubMed  CAS  Google Scholar 

  2. Alberts B. The cell as collection of protein machines: preparing the next generation of molecular biologists. Cell, 1998, 92(3): 291–294

    Article  PubMed  CAS  Google Scholar 

  3. Tyers M, Mann M. From genomics to proteomics. Nature, 2003, 422(6928): 193–197

    Article  PubMed  CAS  Google Scholar 

  4. Ellington A, Szostak J. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990, 346(6287): 818–822

    Article  PubMed  CAS  Google Scholar 

  5. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990, 249(4968): 505–510

    Article  PubMed  CAS  Google Scholar 

  6. Kirby R, Cho E, Gehrke B, et al. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem, 2004, 76(14): 4066–4075

    Article  PubMed  CAS  Google Scholar 

  7. Xiao Y, Lubin A, Heeger A, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angew Chem Int Ed, 2005, 44(34): 5456–5459

    Article  CAS  Google Scholar 

  8. Porschewski P, Grättinger M, Klenzke K, et al. Using aptamers as capture reagents in bead-based assay systems for diagnostics and hit identification. J Biomol Screen, 2006, 11(7): 773–781

    Article  PubMed  CAS  Google Scholar 

  9. Li Y, Lee H, Corn R. Detection of protein biomarkers using RNA aptamer microarrys and enzymatically amplified surface plasmon resonance imaging. Anal Chem, 2007, 79(3): 1082–1088

    Article  PubMed  CAS  Google Scholar 

  10. Hamaguchi N, Ellington A, Stanton M. Aptamer beacons for the direct detection of proteins. Anal Biochem, 2001, 294(2): 126–131

    Article  PubMed  CAS  Google Scholar 

  11. Li J, Fang X, Tan W. Molecular aptamer beacons for real-time protein recognition. Biochem Biophys Res Commun, 2002, 292(1): 31–40

    Article  PubMed  CAS  Google Scholar 

  12. Fang X, Sen A, Vicens M, et al. Synthetic DNA aptamers to detect protein molecular variants in a high-throughput fluorescence quenching assay. Chem Bio Chem, 2003, 4(9): 829–834

    PubMed  CAS  Google Scholar 

  13. Wang X, Li F, Su Y, et al. Ultrasensitive detection of protein using an aptamer-based exonuclease protection assay. Anal Chem, 2004, 76(19): 5605–5610

    Article  PubMed  CAS  Google Scholar 

  14. Cao Z, Tan W. Molecular aptamers for real-time protein-protein interaction study. Chem Eur J, 2005, 11(15): 4502–4508

    Article  CAS  Google Scholar 

  15. Li W, Wang K, Tan W, et al. Aptamer-based analysis of angiogenin by fluorescence anisotropy. Analyst, 2007, 132(2): 107–113

    Article  PubMed  CAS  Google Scholar 

  16. Fredriksson S, Gullberg M, Jarvius J, et al. Protein detection using proximity-dependent DNA ligation assays. Nat Biotechnol, 2002, 20(5): 473–477

    Article  PubMed  CAS  Google Scholar 

  17. Heyduk E, Heyduk T. Nucleic acid-based fluorescence sensors for detecting proteins. Anal Chem, 2005, 77(4): 1147–1156

    Article  PubMed  CAS  Google Scholar 

  18. Di Giusto D, Wlassoff W, Gooding J, et al. Proximity extension of circular DNA aptamers with real-time protein detection. Nucleic Acids Res, 2005, 33(6): e64

    Article  PubMed  Google Scholar 

  19. Padmanabhan K, Padmanabhan K, Ferrara J, et al. The structure of alpha-thrombin inhibited by a 15-mer single-stranded DNA aptamer. J Biol Chem, 1993, 268(24): 17651–17654

    PubMed  CAS  Google Scholar 

  20. Tasset D, Kubik M, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol, 1997, 272(5): 688–698

    Article  PubMed  CAS  Google Scholar 

  21. Macaya R, Waldron J, Beutel B, et al. Structural and functional characterization of potent antithrombotic oligonucleotides possessing both quadruples and duples motifs. Biochemistry, 1995, 34(13): 4478–4492

    Article  PubMed  CAS  Google Scholar 

  22. Kiefer J, Mao C, Braman J, et al. Visualizaing DNA replication in a catalytically active Bacillus DNA polymerase crystal. Nature, 1998, 391(6664): 304–307

    Article  PubMed  CAS  Google Scholar 

  23. Wang J, Zhu S, Xu C. Biological Chemistry (in Chinese). 3rd ed. Beijing: Higher Education Press, 2002. 181–185

    Google Scholar 

  24. Bode W, Turk D, Karshikov A. The refined 1.9-A X-ray crystal structure of D-Phe-Pro-Arg chloromethylketone-inhibited human alpha-thrombin: structure analysis, overall structure, electrostatic properties, detailed active-site geometry, and structure-function relationships. Protein Sci, 1992, 1(4): 426–471

    Article  PubMed  CAS  Google Scholar 

  25. Sun Z, He F. Study on the molecule structural evolution of serine proteinase superfamily (in Chinese). Acta Biophys Sin, 1999, 15(3): 530–535

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wang KeMin.

Additional information

Supported by the National Key Basic Research Program of China (Grant No. 2002CB513110), Key Technologies Research and Development Program of China (Grant No. 2003BA310A16 and 2005EP090026), Key Project of International Technologies Collaboration Program of China (Grant No. 2003DF000039), and the National Natural Science Foundation of China (Grant No. 90606003, 20475015 and 20620120107)

About this article

Cite this article

Yang, X., Wang, L., Wang, K. et al. Novel protein detection method based on proximity-dependent polymerase reaction and aptamers. Chin. Sci. Bull. 53, 204–208 (2008). https://doi.org/10.1007/s11434-007-0487-3

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0487-3

Keywords

Navigation