Skip to main content
Log in

Use of DNA-Aptamers for Enrichment of Low Abundant Proteins in Cellular Extracts for Quantitative Detection by Selected Reaction Monitoring

  • Published:
Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry Aims and scope Submit manuscript

Abstract

The relationship between the amount of a target protein in a complex biological sample and its amount measured by selected reaction monitoring (SRM) mass spectrometry upon the affinity enrichment of the target protein with aptamers immobilized on a solid phase has been investigated. Human thrombin added in known concentrations to cellular extracts derived from bacterial cells was used as a model target protein. The affinity enrichment of thrombin in cellular extracts by means of the thrombin-binding aptamer immobilized on the surface of magnetic microbeads resulted in an approximately 10-fold increase of the concentration of the target protein and a 100-fold decrease of the low limit of a target protein concentration range where its quantitative detection by SRM was possible without interference from other peptides present in the tryptic digest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rauniyar, N., Int. J. Mol. Sci., 2015, vol. 16, pp. 28566–28581. doi 10.3390/ijms161226120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aebersold, R., Burlingame, A.L., and Bradshaw, R.A., Mol. Cell. Proteomics, 2013, vol. 12, pp. 2381–2382. doi 10.1074/mcp.E113.031658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shi, T., Su, D., Liu, T., Tang, K., Camp, D.G., Qian, W.J., and Smith, R.D., Proteomics, 2012, vol. 12, pp. 1074–1092. doi 10.1002/pmic.201100436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wu, C., Duan, J., Liu, T., Smith, R.D., and Qian, W.J., J. Chromatogr. B, 2016, vol. 1021, pp. 57–68. doi 10.1016/j.jchromb.2016.01.015

    Article  CAS  Google Scholar 

  5. Radko, S.P., Rakhmetova, S.Yu., Bodoev, N.V., and Archakov, A.I., Biomed. Khim., 2007, vol. 53, pp. 4–24. doi 10.18097/pbmc20075301004

    Google Scholar 

  6. Dick, L.W., Jr. and McGown, L.B., Anal. Chem., 2004, vol. 76, pp. 3037–3041. doi 10.1021/ac049860e

    Article  CAS  PubMed  Google Scholar 

  7. Ahn, J.Y., Lee, S.W., Kang, H.S., Jo, M., Lee, D.K., Laurell, T., and Kim, S., J. Proteome Res., 2010, vol. 9, pp. 5568–5573. doi 10.1021/pr100300t

    Article  CAS  PubMed  Google Scholar 

  8. Zhao, Y., Widen, S.G., Jamaluddin, M., Tian, B., Wood, T.G., Edeh, C.B., and Brasier, A.R., Mol. Cell. Proteomics, 2011, vol. 10. M111.008771. doi 10.1074/mcp.M111.008771

  9. Zhang, X., Zhu, S., Xiong, Y., Deng, C., and Zhang, X., Angew. Chem. Int. Ed., 2013, vol. 52, pp. 6055–6058. doi 10.1002/anie.201300566

    Article  CAS  Google Scholar 

  10. Xiong, Y., Deng, C., and Zhang, X., Talanta, 2014, vol. 129, pp. 282–289. doi 10.1016/j.talanta. 2014.05.045

    Article  CAS  PubMed  Google Scholar 

  11. Du, F., Alam, M.N., and Pawliszyn, J., Anal. Chim. Acta, 2014, vol. 845, pp. 45–52. doi 10.1016/j. aca.2014.08.018

    Article  CAS  PubMed  Google Scholar 

  12. Lee, S.J., Adler, B., Ekstrom, S., Rezeli, M., Vegvari, A., Park, J.W., Malm, J., and Laurell, T., Anal. Chem., 2014, vol. 86, pp. 7627–7634. doi 10.1021/c501488b

    Article  CAS  PubMed  Google Scholar 

  13. Gupta, V., Lassman, M.E., McAvoy, T., Lee, A.Y., Chappell, D.L., and Laterza, O.F., Bioanalysis, 2016, vol. 8, pp. 1557–1564. doi 10.4155/bio-2016-0046

    Article  CAS  PubMed  Google Scholar 

  14. Bock, L.C., Griffin, L.C., Latham, J.A., Vermaas, E.H., and Toole, J.J., Nature, 1992, vol. 355, pp. 564–566. doi 10.1038/355564a0

    Article  CAS  PubMed  Google Scholar 

  15. Wisniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M., Nat. Methods, 2009, vol. 6, pp. 359–362. doi 10.1038/nmeth.1322

    Article  CAS  PubMed  Google Scholar 

  16. Wisniewski, J.R., Anal. Chem., 2016, vol. 88, pp. 5438–5443. doi 10.1021/acs.analchem.6b00859

    Article  CAS  PubMed  Google Scholar 

  17. Zgoda, V.G., Kopylov, A.T., Tikhonova, O.V., Moisa, A.A., Pyndyk, N.V., Farafonova, T.E., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A., Poverennaya, E.V., Radko, S.P., Khmeleva, S.A., Kurbatov, L.K., Filimonov, A.D., Bogolyubova, N.A., Ilgisonis, E.V., Chernobrovkin, A.L., Ivanov, A.S., Medvedev, A.E., Mezentsev, Y.V., Moshkovskii, S.A., Naryzhny, S.N., Ilina, E.N., Kostrjukova, E.S., Alexeev, D.G., Tyakht, A.V., Govorun, V.M., and Archakov, A.I., J. Proteome Res., 2013, vol. 12, pp. 123–134. doi 10.1021/pr300821n

    Article  CAS  PubMed  Google Scholar 

  18. Kopylov, A.T., Ilgisonis, E.V., Moysa, A.A., Tikhonova, O.V., Zavialova, M.G., Novikova, S.E., Lisitsa, A.V., Ponomarenko, E.A., Moshkovskii, S.A., Markin, A.A., Grigoriev, A.I., Zgoda, V.G., and Archakov, A.I., J. Proteome Res., 2016, vol. 15, pp. 4039–4046. doi 10.1021/acs.jproteome.6b00384

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. P. Radko.

Additional information

Original Russian Text © K.G. Ptitsyn, S.E. Novikova, Y.Y. Kiseleva, A.A. Moysa, L.K. Kurbatov, T.E. Farafonova, S.P. Radko, V.G. Zgoda, A.I. Archakov, 2018, published in Biomeditsinskaya Khimiya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ptitsyn, K.G., Novikova, S.E., Kiseleva, Y.Y. et al. Use of DNA-Aptamers for Enrichment of Low Abundant Proteins in Cellular Extracts for Quantitative Detection by Selected Reaction Monitoring. Biochem. Moscow Suppl. Ser. B 12, 176–180 (2018). https://doi.org/10.1134/S1990750818020105

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990750818020105

Keywords

Navigation