Skip to main content
Log in

Analysis of active sites for N2 and H+ reduction on FeMo-cofactor of nitrogenase

  • Articles
  • Microbiology
  • Published:
Chinese Science Bulletin

Abstract

Dinitrogen (N2) and proton (H+), which act as physiological substrates of nitrogenase, are reduced on FeMo-co of the MoFe protein. However, researchers have different opinions about their exact reduction sites. Nitrogenases were purified from the wild type (WT) and five mutants of Azotobacter vinelandii (Av), including Qα191K, Hα195Q, nifV , Qα191K/nifV Hα195Q/nifV ; and the activities of these enzymes for N2 and H+ reduction were analyzed. Our results suggest that the Fe2 and Fe6, atoms closed to the central sulfur atom (S2B) within FeMo-co, are sites for N2 binding and reduction and the Mo atom of FeMo-co is the site for H+ reduction. Combining these data with further bioinformatical analysis, we propose that two parallel electron channels may exist between the [8Fe7S] cluster and FeMo-co.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burris R H. Nitrogenases. J Biol Chem, 1991, 266(15): 9339–9342

    Google Scholar 

  2. Burgess B K, Lowe D J. Mechanism of molybdenum nitrogenase. Chem Rev, 1996, 96(7): 2983–3011

    Article  Google Scholar 

  3. Howard J B, Davis R, Moldenhauer B, et al. Fe:S cluster ligands are the only cysteines required for nitrogenase Fe-protein activities. J Biol Chem, 1989, 264(19): 11270–11274

    Google Scholar 

  4. Georgiadis M M, Komiya H, Chakrabarti P, et al. Crystallographic structure of the nitrogenase iron protein from Azotobacter vinelandii. Science, 1992, 257(5077): 1653–1659

    Article  Google Scholar 

  5. Kim J, Rees D C. Structural models for the metal centers in the nitrogenase molybdenum-iron protein. Science, 1992, 257(5077): 1677–1682

    Article  Google Scholar 

  6. Kim J, Rees D C. Crystallographic structure and functional implications of the nitrogenase molybdenum-iron protein from Azotobacter vinelandii. Nature, 1992, 360: 553–560

    Article  Google Scholar 

  7. Dean D R, Bolin J T, Zheng L. Nitrogenase metalloclusters: Structures, organization, and synthesis. J Bacteriol, 1993, 175(21): 6737–6744

    Google Scholar 

  8. Mayer S M, Lawson D M, Gorma C A, et al. New insights into structure-function relationships in nitrogenase: A 1.6 Å resolution X-ray crystallographic study of Klebsiella pneumoniae MoFe-protein. J Mol Biol, 1999, 292(4): 871–891

    Article  Google Scholar 

  9. Yang T C, Laryukhin M, Lee H I, et al. The interstitial atom of the nitrogenase FeMo-cofactor: ENDOR and ESEEM evidence that is not anitrogen. J Am Chem Soc, 2005, 127(37): 12804–12805

    Article  Google Scholar 

  10. Einsle O, Tezcan F A, Andrade S L, et al. Nitrogenase MoFe-protein at 1.16 Å resolution: A central ligand in the FeMo-cofactor. Science, 2002, 297(5587): 1696–1700

    Article  Google Scholar 

  11. Rees D C. Great metalloclusters in enzymology. Annu Rev Biochem, 2002, 71: 221–246

    Article  Google Scholar 

  12. Igarashi R Y, Dos Santos P C, Niehaus W G et al. Localization of a catalytic intermediate bound to the FeMo-cofactor of nitrogenase. J Biol Chem, 2004, 279(33): 34770–34775

    Article  Google Scholar 

  13. Rees D C, Howard J B. Nitrogenase: Standing at the crossroads. Curr Opin Chem Biol, 2000, 4: 559–566

    Article  Google Scholar 

  14. Kim C H, Newton W E, Dean D R. Role of the MoFe protein alpha-subunit histidine-195 residue in FeMo-cofactor binding and nitrogenase catalysis. Biochemistry, 1995, 34(9): 2798–2808

    Article  Google Scholar 

  15. Christiansen J, Cash V L, Seefeldt L C, et al. Isolation and characterization of an acetylene-resistant nitrogenase. J Biol Chem, 2000, 275(15): 11459–11464

    Article  Google Scholar 

  16. Benton P M, Mayer S M, Shao J, et al. Interaction of acetylene and cyanide with the resting state of nitrogenase alpha-96-substituted MoFe proteins. Biochemistry, 2001, 40: 13816–13825

    Article  Google Scholar 

  17. Scott D J, Dean D R, Newton W E. Nitrogenase-catalyzed ethane production and CO-sensitive hydrogen evolution from MoFe proteins having amino acid substitutions in an alpha-subunit FeMo cofactor-binding domain. J Biol Chem, 1992, 267(28): 20002–20010

    Google Scholar 

  18. Fisher K, Dilworth M J, Newton W E. Differential effects on N(2) binding and reduction, HD formation, and azide reduction with alpha-195(His)- and alpha-191(Gln)-substituted MoFe proteins of Azotobacter vinelandii nitrogenase. Biochemistry, 2000, 39: 15570–15577

    Article  Google Scholar 

  19. Barney B M, Igarashi R Y, Dos Santos P C, et al. Substrate interaction at an iron-sulfur face of the FeMo-cofactor during nitrogenase catalysis. J Biol Chem, 2004, 279(51): 53621–53624

    Article  Google Scholar 

  20. Shah V K, Imperial J, Ugalde R A, et al. In vitro synthesis of the iron-molybdenum cofactor of nitrogenase. Proc Natl Acad Sci USA, 1986, 83(6): 1636–1640

    Article  Google Scholar 

  21. Shah V K, Brill W J. Isolation of an iron-molybdenum cofactor from nitrogenase. Proc Natl Acad Sci USA, 1977, 74(8): 3249–3253

    Article  Google Scholar 

  22. Hawkes T R, Lowe D J, Smith B E. Nitrogenase from Klebsiella pneumoniae. An EPR signal observed during enzyme turnover under ethylene is associated with the iron-molybdenum cofactor. Biochem J, 1983, 211: 495–497

    Google Scholar 

  23. Rees D C, Akif Tezcan F, Haynes C A, et al. Structural basis of biological nitrogen fixation. Philos Transact A Math Phys Eng Sci, 2005, 363: 971–984

    Article  Google Scholar 

  24. Simpson F B, Burris R H. A nitrogen pressure of 50 atmospheres does not prevent evolution of hydrogen by nitrogenase. Science, 1984, 224(4653): 1095–1097

    Article  Google Scholar 

  25. Zhao D H, Li J L. Construction and characterization of double mutants in nitrogenase of Klebsiella pneumoniae. Chin Sci Bull, 2004, 49(16): 1707–1713

    Article  Google Scholar 

  26. Li J L, Burris R H. Influence of pN2 and pD2 on HD formation by various nitrogenases. Biochemistry, 1983, 22(19): 4472–4480

    Article  Google Scholar 

  27. Turner G L, Gibson A H. Measurement of nitrogen fixation by indirect means. In: Gergerson F J, ed. Methods for Evaluating Biological Nitrogen Fixation. New York: John Wiley & Sons, 1980. 112–125

    Google Scholar 

  28. Corbin J L. Liquid Chromatographic-fluorescence determination of ammonia from nitrogenase reactions: A 2-Min Assay. Appl Environ Microbiol, 1984, 47(5): 1027–1030

    Google Scholar 

  29. Lanzilotta W N, Christiansen J, Dean D R, et al. Evidence for coupled electron and proton transfer in the [8Fe-7S] cluster of nitrogenase. Biochemistry, 1998, 37(36): 11376–11384

    Article  Google Scholar 

  30. Chan M K, Kim J, Rees D C. The nitrogenase FeMo-cofactor and P-cluster pair: 2.2 Å resolution structures. Science, 1993, 260(5109): 792–794

    Article  Google Scholar 

  31. Lee H I, Hales B J, Hoffman B M. Metal-ion valencies of the FeMo cofactor in CO-inhibited and resting state nitrogenase by 57Fe Q-band ENDOR. J Am Chem Soc, 1997, 119(47): 11395–11400

    Article  Google Scholar 

  32. Pickett C J, Vincent K A, Ibrahim S K, et al. Electron-transfer chemistry of the iron-molybdenum cofactor of nitrogenase: delocalized and localized reduced states of FeMoco which allow binding of carbon monoxide to iron and molybdenum. Chem Eur J, 2003, 9(1): 76–87

    Article  Google Scholar 

  33. Durrant M C. Controlled protonation of iron-molybdenum cofactor by nitrogenase: A structural and theoretical analysis. Biochem J, 2001, 355: 569–576

    Google Scholar 

  34. Stiefel E I. The mechanism of nitrogen fixation. In: Newton W E, ed. Recent Development in Nitrogen Fixation. London: Academic Press, 1977. 69–108

    Google Scholar 

  35. Liang J, Burris R H. Hydrogen burst associated with nitrogenase-catalyzed reactions. Proc Natl Acad Sci USA, 1988, 85(24): 9446–9450

    Article  Google Scholar 

  36. Zhang Z S, Wu B H, Li J L. Mechanism of H2 evolution by nitrogenase. Acta Microbiol Sin (in Chinese), 1993, 33: 320–330

    Google Scholar 

  37. Zhang Z S, Wu B H, Li J L. Mechanism of H2 evolution by nitrogenase. In: Palacios R, Mora J, Newton W E, eds. New Horizons in Nitrogen Fixation. Dordrecht: Kluwer Academic Publishers, 1992. 154

    Google Scholar 

  38. Dean D R, Setterquist R A, Brigle K E, et al. Evidence that conserved residues Cys-62 and Cys-154 within the Azotobacter vinelandii nitrogenase MoFe protein alpha-subunit are essential for nitrogenase activity but conserved residues His-83 and Cys-88 are not. Mol Microbiol, 1990, 4(9): 1505–1512

    Article  Google Scholar 

  39. McLean P A, Dixon R A. Requirement of nifV gene for production of wild-type nitrogenase enzyme in Klebsiella pneumoniae. Nature, 1981, 292: 655–656

    Article  Google Scholar 

  40. Durrant M C, Francis A, Lowe D J, et al. Evidence for a dynamic role for homocitrate during nitrogen fixation: The effect of substitution at the alpha-Lys426 position in MoFe-protein of Azotobacter vinelandii. Biochem J, 2006, 397: 261–270

    Article  Google Scholar 

  41. Nyborg A C, Johnson J L, Gunn A, et al. Evidence for a two-electron transfer using the all-ferrous Fe protein during nitrogenase catalysis. J Biol Chem, 2000, 275(50): 39307–39312

    Article  Google Scholar 

  42. Nyborg A C, Erickson J A, Johnson J L, et al. Reactions of Azotobacter vinelandii nitrogenase using Ti(III) as reductant. J Inorg Biochem, 2000, 78(4): 371–381

    Article  Google Scholar 

  43. Lowery T J, Wilson P E, Zhang B, et al. Nitrogen fixation special feature: Flavodoxin hydroquinone reduces Azotobacter vinelandii Fe protein to the all-ferrous redox state with a S = 0 spin state. Proc Natl Acad Sci USA, 2006, 103(46): 17131–17136

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li Jilun.

Additional information

Supported by National Key Basic Research Development Program of China (Grant No. 001CB108904)

About this article

Cite this article

Guan, F., Zhao, D., Pan, M. et al. Analysis of active sites for N2 and H+ reduction on FeMo-cofactor of nitrogenase. CHINESE SCI BULL 52, 2088–2094 (2007). https://doi.org/10.1007/s11434-007-0294-x

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-007-0294-x

Keywords

Navigation