Skip to main content
Log in

RadA: A protein involved in DNA damage repair processes of Deinococcus radiodurans R1

  • Articles
  • Published:
Chinese Science Bulletin

Abstract

RadA is highly conserved in bacteria and belongs to the RecA/RadA/Rad51 protein superfamily found in bacteria, archaea and eukarya. In Archaea, it plays a critical role in homologous recombination process due to its RecA-like function. In Escherichia coli, it takes part in conjugational recombination and DNA repair but is not as important as that of archaea. Using PSI-BLAST searches, we found that Deinococcus radiodurans RadA had a higher similarity to that of bacteria than archaea and eukarya. Disruption of radA gene in D. radiodurans resulted in a modestly decreased resistance to gamma radiation and ultraviolet, but had no effect on the resistance to hydrogen peroxide. Complementation of the radA disruptant by both E. coli radA and D. radiodurans radA could fully restore its resistance to gamma radiation and ultraviolet irradiation. Further domain function analyses of D. radiodurans RadA showed that the absence of the zinc finger domain resulted in a slightly more sensitive phenotype to gamma and UV radiation than that of the radA mutant, while the absence of the Lon protease domain exhibited a slightly increased resistance to gamma and UV radiation. These data suggest that D. radiodurans RadA does play an important role in the DNA damage repair processes and its three different domains have different functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brendel V, Brocchieri L, Sandler S J, et al. Evolutionary comparisons of RecA-like proteins across all major kingdoms of living organisms. J Mol Evol, 1997, 44: 528–541

    Article  Google Scholar 

  2. Kil Y V, Glazunov E A, Lanzov V A. Characteristic thermodependence of the RadA recombinase from the hyperthermophilic archaeon Desulfurococcus amylolyticus. J Bacteriol, 2005, 187: 2555–2557

    Article  Google Scholar 

  3. Ogawa T, Shinohara A, Nabetani A, et al. RecA-like recombination proteins in eukaryotes: Functions and structures of RAD51 genes. Cold Spring Harbor Symp Quant Biol, 1993, 58: 567–576

    Google Scholar 

  4. Sandler S J, Satin L H, Samra H S, et al. recA-like genes from three archaean species with putative protein products similar to Rad51 and Dmc1 proteins of the yeast Saccharomyces cerevisiae. Nucleic Acids Res, 1996, 24: 2125–2132

    Article  Google Scholar 

  5. Bianco P R, Tracy R B, Kowalczykowski S C. DNA strand exchange proteins: a biochemical and physical comparison. Front Biosci, 1998, 3: 570–603

    Google Scholar 

  6. Diruggiero J, Santangelo N, Nackerdien Z, et al. Repair of extensive ionizing-radiation DNA damage at 95°C in the hyperthermophilic archaeon Pyrococcus furiosus. J Bacteriol, 1997, 179: 4643–4645

    Google Scholar 

  7. Kowalczykowski S C, Dixon D A, Eggleston A K, et al. Biochemistry of homologous recombination in Escherichia coli. Microbiol Rev, 1994, 58: 401–465

    Google Scholar 

  8. Roca A I, Cox M M. RecA protein: Structure, function, and role in recombinational DNA repair. Prog Nucleic Acids Res Mol Biol, 1997, 56: 129–223

    Article  Google Scholar 

  9. Shinohara A, Ogawa H, Ogawa T. Rad51 protein involved in recombination and repair in S. cerevisiae is a RecA-like protein. Cell, 1992, 69: 457–470

    Article  Google Scholar 

  10. Shinohara A, Ogawa T. Homologous recombination and the roles of double-strand breaks. Trends Biochem Sci, 1995, 20: 387–391

    Article  Google Scholar 

  11. Kil Y V, Baitin D M, Masui R, et al. Efficient strand transfer by the RadA recombinase from the hyperthermophilic archaeon Desulfurococcus amylolyticus. J Bacteriol, 2000, 182: 130–134

    Article  Google Scholar 

  12. Woods W G, Dyall-Smith M L. Construction and analysis of a recombination-deficient (radA) mutant of Haloferax volcanii. Mol Microbiol, 1997, 23: 791–797

    Article  Google Scholar 

  13. Seitz E M, Brockman J P, Sandler S J, et al. RadA protein is an archaeal RecA protein homolog that catalyzes DNA strand exchange. Genes Dev, 1998, 12: 1248–1253

    Google Scholar 

  14. Aihara H, Ito Y, Kurumizaka H, et al. The N-terminal domain of the human Rad51 protein binds DNA: Structure and a DNA binding surface as revealed by NMR. J Mol Biol, 1999, 290: 495–504

    Article  Google Scholar 

  15. Komori K, Miyata T, Daiyasu H, et al. Domain analysis of an archaeal RadA protein for the strand exchange activity. J Biol Chem, 2000, 275: 33791–33797

    Article  Google Scholar 

  16. Diver W P, Sargentini N J, Smith K C. A mutation (radA100) in Escherichia coli that selectively sensitizes cells grown in rich medium to X or UV-radiation, or methyl methanesulphonate. Int J Radiat Biol Relat Stud Phys Chem Med, 1982, 42: 339–346

    Google Scholar 

  17. Sargentini N J, Smith K C. Quantitation of the involvement of the recA, recB, recC, recF, recJ, recN, lexA, radA, radB, uvrD, and umuC genes in the repair of X-ray-induced DNA double-strand breaks in Escherichia coli. Radiat Res, 1986, 107: 58–72

    Article  Google Scholar 

  18. Beam C E, Saveson C J, Lovett S T. Role for radA/sms in recombination intermediate processing in Escherichia coli. J Bacteriol, 2002, 184: 6836–6844

    Article  Google Scholar 

  19. Anderson A W, Nordon H C, Cain R F, et al. Studies on a radio-resistant micrococcus. I, Isolation, morphology, cultural characteristics, and resistance to gamma radiation. Food Technol, 1956, 10: 575–578

    Google Scholar 

  20. Liu Y Q, Zhou J Z, Omelchenko M V. Transcriptome dynamics of Deinococcus radiodurans recovering from ionizing radiation. Proc Natl Acad Sci USA, 2003, 100: 4191–4196

    Article  Google Scholar 

  21. Daly M J, Ouyang L, Fuchs P, et al. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radiation-resistant bacterium Deinococcus radiodurans. J Bacteriol, 1994, 176: 3508–3517

    Google Scholar 

  22. Minton K W. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol Microbiol, 1994, 13: 9–15

    Article  Google Scholar 

  23. Makarova K S, Aravind L, Wolf Y I, et al. Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev, 2001, 65: 44–79

    Article  Google Scholar 

  24. White O, Eisen J A, Heidelberg J F. Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science, 1999, 286: 1517–1577

    Google Scholar 

  25. Zimmerman J M, Battista J R. A ring-like nucleoids is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol, 2005, 1: 5–17

    Google Scholar 

  26. Kim J, Cox M M. The RecA protein of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc Natl Acad Sci USA, 2002, 99: 7917–7921

    Article  Google Scholar 

  27. Funayama T, Narumi I, Kikuchi M, et al. Identification and disruption analysis of the recN gene in the extremely radioresistant bacterium Deinococcus radiodurans. Mutat Res, 1999, 435: 151–161

    Google Scholar 

  28. Arrage A A, Phelps T J, Benoit R E, et al. Survival of subsurface microorganisms exposed to UV radiation and hydrogen peroxide. Appl Environ Microbiol, 1993, 59: 3545–3550

    Google Scholar 

  29. Gao G J, Lu H M, Huang L F, et al. Construction of DNA damage response gene pprI function-deficient and function-complementary mutants in Deinococcus radiodurans. Chin Sci Bull, 2005, 50(4): 311–316

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yuejin.

About this article

Cite this article

Zhou, Q., Zhang, X., Xu, H. et al. RadA: A protein involved in DNA damage repair processes of Deinococcus radiodurans R1. CHINESE SCI BULL 51, 2993–2999 (2006). https://doi.org/10.1007/s11434-006-2209-7

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11434-006-2209-7

Keywords

Navigation