Skip to main content
Log in

Topological and superconducting properties of monolayered CoN and CoP: A first-principles comparative study

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Two-dimensional systems that simultaneously harbor superconductivity and nontrivial band topology may serve as appealing platforms for realizing topological superconductivity with promising applications in fault-tolerant quantum computing. Here, based on first-principles calculations, we show that monolayered CoN and CoP with the isovalent FeSe-like structure are stable in freestanding form, even though their known bulk phases have no resemblance to layering. The two systems are further revealed to display intrinsic band inversions due to crystal field splitting, and such orderings are preserved with the inclusion of spin-orbit coupling (SOC), which otherwise is able to open a curved band gap, yielding a non-zero Z2 topological invariant in each case. Such a mechanism of topologicalization is distinctly contrasted with that identified recently for the closely related monolayers of CoX (X = As, Sb, Bi), where the SOC plays an indispensable role in causing a nontrivial band inversion. Next, we demonstrate that, by applying equi-biaxial tensile strain, the electron-phonon coupling strength in monolayered CoN can be significantly enhanced, yielding a superconducting transition temperature (Tc) up to 7–12 K for the Coulomb pseudopotential of μ* = 0.2–0.1, while the CoP monolayer shows very low Tc even under pronounced strain. Their different superconducting behaviors can be attributed to different variations in lattice softening and electronic density of states around the Fermi level upon pressuring. Our central findings enrich the understanding of different mechanisms of band inversions and topologicalization and offer platforms for achieving the coexistence of superconductivity and nontrivial band topology based on two-dimensional systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Saito, T. Nojima, and Y. Iwasa, Nat. Rev. Mater. 2, 16094 (2017).

    Article  ADS  Google Scholar 

  2. N. Reyren, S. Thiel, A. D. Caviglia, L. F. Kourkoutis, G. Hammerl, C. Richter, C. W. Schneider, T. Kopp, A. S. Ruetschi, D. Jaccard, M. Gabay, D. A. Muller, J. M. Triscone, and J. Mannhart, Science 317, 1196 (2007).

    Article  ADS  Google Scholar 

  3. A. Gozar, G. Logvenov, L. F. Kourkoutis, A. T. Bollinger, L. A. Giannuzzi, D. A. Muller, and I. Bozovic, Nature 455, 782 (2008).

    Article  ADS  Google Scholar 

  4. S. Qin, J. Kim, Q. Niu, and C. K. Shih, Science 324, 1314 (2009).

    Article  ADS  Google Scholar 

  5. T. Zhang, P. Cheng, W. J. Li, Y. J. Sun, G. Wang, X. G. Zhu, K. He, L. Wang, X. Ma, X. Chen, Y. Wang, Y. Liu, H. Q. Lin, J. F. Jia, and Q. K. Xue, Nat. Phys. 6, 104 (2010).

    Article  Google Scholar 

  6. J. T. Ye, S. Inoue, K. Kobayashi, Y. Kasahara, H. T. Yuan, H. Shimotani, and Y. Iwasa, Nat. Mater. 9, 125 (2010).

    Article  ADS  Google Scholar 

  7. J. T. Ye, Y. J. Zhang, R. Akashi, M. S. Bahramy, R. Arita, and Y. Iwasa, Science 338, 1193 (2012).

    Article  ADS  Google Scholar 

  8. Y. Yu, L. Ma, P. Cai, R. Zhong, C. Ye, J. Shen, G. D. Gu, X. H. Chen, and Y. Zhang, Nature 575, 156 (2019).

    Article  ADS  Google Scholar 

  9. Q. Y. Wang, Z. Li, W. H. Zhang, Z. C. Zhang, J. S. Zhang, W. Li, H. Ding, Y. B. Ou, P. Deng, K. Chang, J. Wen, C. L. Song, K. He, J. F. Jia, S. H. Ji, Y. Y. Wang, L. L. Wang, X. Chen, X. C. Ma, and Q. K. Xue, Chin. Phys. Lett. 29, 037402 (2012).

    Article  ADS  Google Scholar 

  10. C. W. J. Beenakker, Annu. Rev. Condens. Matter Phys. 4, 113 (2013).

    Article  ADS  Google Scholar 

  11. W. Qin, J. Gao, P. Cui, and Z. Zhang, Sci. China-Phys. Mech. Astron. 66, 267005 (2023).

    Article  ADS  Google Scholar 

  12. W. Qin, L. Li, and Z. Zhang, Nat. Phys. 15, 796 (2019).

    Article  Google Scholar 

  13. Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).

    Article  ADS  Google Scholar 

  14. W. Qin, and A. H. MacDonald, Phys. Rev. Lett. 127, 097001 (2021).

    Article  ADS  Google Scholar 

  15. H. Zhou, T. Xie, T. Taniguchi, K. Watanabe, and A. F. Young, Nature 598, 434 (2021).

    Article  ADS  Google Scholar 

  16. H. Zhou, L. Holleis, Y. Saito, L. Cohen, W. Huynh, C. L. Patterson, F. Yang, T. Taniguchi, K. Watanabe, and A. F. Young, Science 375, 774 (2022).

    Article  ADS  Google Scholar 

  17. N. F. Q. Yuan, K. F. Mak, and K. T. Law, Phys. Rev. Lett. 113, 097001 (2014).

    Article  ADS  Google Scholar 

  18. N. Hao, and J. Hu, Phys. Rev. X 4, 031053 (2014).

    Google Scholar 

  19. Z. F. Wang, H. Zhang, D. Liu, C. Liu, C. Tang, C. Song, Y. Zhong, J. Peng, F. Li, C. Nie, L. Wang, X. J. Zhou, X. Ma, Q. K. Xue, and F. Liu, Nat. Mater. 15, 968 (2016).

    Article  ADS  Google Scholar 

  20. X. Shi, Z. Q. Han, P. Richard, X. X. Wu, X. L. Peng, T. Qian, S. C. Wang, J. P. Hu, Y. J. Sun, and H. Ding, Sci. Bull. 62, 503 (2017).

    Article  Google Scholar 

  21. C. Liu, C. Chen, X. Liu, Z. Wang, Y. Liu, S. Ye, Z. Wang, J. Hu, and J. Wang, Sci. Adv. 6, eaax7547 (2020).

    Article  ADS  Google Scholar 

  22. Z. Fei, T. Palomaki, S. Wu, W. Zhao, X. Cai, B. Sun, P. Nguyen, J. Finney, X. Xu, and D. H. Cobden, Nat. Phys. 13, 677 (2017).

    Article  Google Scholar 

  23. S. Tang, C. Zhang, D. Wong, Z. Pedramrazi, H. Z. Tsai, C. Jia, B. Moritz, M. Claassen, H. Ryu, S. Kahn, J. Jiang, H. Yan, M. Hashimoto, D. Lu, R. G. Moore, C. C. Hwang, C. Hwang, Z. Hussain, Y. Chen, M. M. Ugeda, Z. Liu, X. Xie, T. P. Devereaux, M. F. Crommie, S. K. Mo, and Z. X. Shen, Nat. Phys. 13, 683 (2017).

    Article  Google Scholar 

  24. E. Sajadi, T. Palomaki, Z. Fei, W. Zhao, P. Bement, C. Olsen, S. Luescher, X. Xu, J. A. Folk, and D. H. Cobden, Science 362, 922 (2018).

    Article  ADS  Google Scholar 

  25. V. Fatemi, S. Wu, Y. Cao, L. Bretheau, Q. D. Gibson, K. Watanabe, T. Taniguchi, R. J. Cava, and P. Jarillo-Herrero, Science 362, 926 (2018).

    Article  ADS  Google Scholar 

  26. C. Liu, C. S. Lian, M. H. Liao, Y. Wang, Y. Zhong, C. Ding, W. Li, C. L. Song, K. He, X. C. Ma, W. Duan, D. Zhang, Y. Xu, L. Wang, and Q. K. Xue, Phys. Rev. Mater. 2, 094001 (2018).

    Article  Google Scholar 

  27. J. Chen, and Y. Ge, Phys. Rev. B 103, 064510 (2021).

    Article  ADS  Google Scholar 

  28. D. Campi, S. Kumari, and N. Marzari, Nano Lett. 21, 3435 (2021).

    Article  ADS  Google Scholar 

  29. J. Gao, W. Ding, S. Zhang, Z. Zhang, and P. Cui, Nano Lett. 21, 7396 (2021).

    Article  ADS  Google Scholar 

  30. C. Zhao, L. Li, L. Zhang, J. Qin, H. Chen, B. Xia, B. Yang, H. Zheng, S. Wang, C. Liu, Y. Li, D. Guan, P. Cui, Z. Zhang, and J. Jia, Phys. Rev. Lett. 128, 206802 (2022).

    Article  ADS  Google Scholar 

  31. B. A. Bernevig, T. L. Hughes, and S. C. Zhang, Science 314, 1757 (2006).

    Article  ADS  Google Scholar 

  32. C. L. Kane, and E. J. Mele, Phys. Rev. Lett. 95, 226801 (2005).

    Article  ADS  Google Scholar 

  33. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  34. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  35. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  36. S. Nosé, J. Chem. Phys. 81, 511 (1984).

    Article  ADS  Google Scholar 

  37. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  ADS  Google Scholar 

  38. A. A. Soluyanov, and D. Vanderbilt, Phys. Rev. B 83, 235401 (2011).

    Article  ADS  Google Scholar 

  39. M. P. L. Sancho, J. M. Lopez Sancho, J. M. L. Sancho, and J. Rubio, J. Phys. F-Met. Phys. 15, 851 (1985).

    Article  ADS  Google Scholar 

  40. A. A. Mostofi, J. R. Yates, Y. S. Lee, I. Souza, D. Vanderbilt, and N. Marzari, Comput. Phys. Commun. 178, 685 (2008).

    Article  ADS  Google Scholar 

  41. G. Pizzi, V. Vitale, R. Arita, S. Blügel, F. Freimuth, G. Géranton, M. Gibertini, D. Gresch, C. Johnson, T. Koretsune, J. Ibañez-Azpiroz, H. Lee, J. M. Lihm, D. Marchand, A. Marrazzo, Y. Mokrousov, J. I. Mustafa, Y. Nohara, Y. Nomura, L. Paulatto, S. Poncé, T. Ponweiser, J. Qiao, F. Thöle, S. S. Tsirkin, M. Wierzbowska, N. Marzari, D. Vanderbilt, I. Souza, A. A. Mostofi, and J. R. Yates, J. Phys.-Condens. Matter 32, 165902 (2020).

    Article  ADS  Google Scholar 

  42. Q. S. Wu, S. N. Zhang, H. F. Song, M. Troyer, and A. A. Soluyanov, Comput. Phys. Commun. 224, 405 (2018).

    Article  ADS  Google Scholar 

  43. S. Poncé, E. R. Margine, C. Verdi, and F. Giustino, Comput. Phys. Commun. 209, 116 (2016).

    Article  ADS  MathSciNet  Google Scholar 

  44. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G. L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A. P. Seitsonen, A. Smogunov, P. Umari, and R. M. Wentzcovitch, J. Phys.-Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  45. M. J. van Setten, M. Giantomassi, E. Bousquet, M. J. Verstraete, D. R. Hamann, X. Gonze, and G. M. Rignanese, Comput. Phys. Commun. 226, 39 (2018).

    Article  ADS  Google Scholar 

  46. W. L. McMillan, Phys. Rev. 167, 331 (1968).

    Article  ADS  Google Scholar 

  47. P. B. Allen, and R. C. Dynes, Phys. Rev. B 12, 905 (1975).

    Article  ADS  Google Scholar 

  48. F. Giustino, Rev. Mod. Phys. 89, 015003 (2017).

    Article  ADS  MathSciNet  Google Scholar 

  49. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I. E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari, Nat. Nanotech. 13, 246 (2018).

    Article  ADS  Google Scholar 

  50. Z. Zhu, X. Cai, S. Yi, J. Chen, Y. Dai, C. Niu, Z. Guo, M. Xie, F. Liu, J. H. Cho, Y. Jia, and Z. Zhang, Phys. Rev. Lett. 119, 106101 (2017).

    Article  ADS  Google Scholar 

  51. M. C. Lucking, W. Xie, D. H. Choe, D. West, T. M. Lu, and S. B. Zhang, Phys. Rev. Lett. 120, 086101 (2018).

    Article  ADS  Google Scholar 

  52. W. Ding, J. Zeng, W. Qin, P. Cui, and Z. Zhang, Phys. Rev. Lett. 124, 027002 (2020).

    Article  ADS  Google Scholar 

  53. X. Huang, J. Guan, Z. Lin, B. Liu, S. Xing, W. Wang, and J. Guo, Nano Lett. 17, 4619 (2017).

    Article  ADS  Google Scholar 

  54. Y. Wang, G. Qiu, R. Wang, S. Huang, Q. Wang, Y. Liu, Y. Du, W. A. Goddard III, M. J. Kim, X. Xu, P. D. Ye, and W. Wu, Nat. Electron. 1, 228 (2018).

    Article  Google Scholar 

  55. S. Berweger, G. Qiu, Y. Wang, B. Pollard, K. L. Genter, R. Tyrrell-Ead, T. M. Wallis, W. Wu, P. D. Ye, and P. Kabos, Nano Lett. 19, 1289 (2019).

    Article  ADS  Google Scholar 

  56. X. Lin, J. C. Lu, Y. Shao, Y. Y. Zhang, X. Wu, J. B. Pan, L. Gao, S. Y. Zhu, K. Qian, Y. F. Zhang, D. L. Bao, L. F. Li, Y. Q. Wang, Z. L. Liu, J. T. Sun, T. Lei, C. Liu, J. O. Wang, K. Ibrahim, D. N. Leonard, W. Zhou, H. M. Guo, Y. L. Wang, S. X. Du, S. T. Pantelides, and H. J. Gao, Nat. Mater. 16, 717 (2017).

    Article  ADS  Google Scholar 

  57. L. Gao, J. T. Sun, J. C. Lu, H. Li, K. Qian, S. Zhang, Y. Y. Zhang, T. Qian, H. Ding, X. Lin, S. Du, and H. J. Gao, Adv. Mater. 30, 1707055 (2018).

    Article  Google Scholar 

  58. C. Ding, G. Gong, Y. Liu, F. Zheng, Z. Zhang, H. Yang, Z. Li, Y. Xing, J. Ge, K. He, W. Li, P. Zhang, J. Wang, L. Wang, and Q. K. Xue, ACS Nano 13, 10434 (2019).

    Article  Google Scholar 

  59. L. Qin, Z. H. Zhang, Z. Jiang, K. Fan, W. H. Zhang, Q. Y. Tang, H. N. Xia, F. Meng, Q. Zhang, L. Gu, D. West, S. Zhang, and Y. S. Fu, ACS Nano 15, 8184 (2021).

    Article  Google Scholar 

  60. K. Mustonen, C. Hofer, P. Kotrusz, A. Markevich, M. Hulman, C. Mangler, T. Susi, T. J. Pennycook, K. Hricovini, C. Richter, J. C. Meyer, J. Kotakoski, and V. Skákalová, Adv. Mater. 34, 2106922 (2022).

    Article  Google Scholar 

  61. Z. Wang, P. Zhang, G. Xu, L. K. Zeng, H. Miao, X. Xu, T. Qian, H. Weng, P. Richard, A. V. Fedorov, H. Ding, X. Dai, and Z. Fang, Phys. Rev. B 92, 115119 (2015).

    Article  ADS  Google Scholar 

  62. Y. Xu, B. Yan, H. J. Zhang, J. Wang, G. Xu, P. Tang, W. Duan, and S. C. Zhang, Phys. Rev. Lett. 111, 136804 (2013).

    Article  ADS  Google Scholar 

  63. X. Qian, J. Liu, L. Fu, and J. Li, Science 346, 1344 (2014).

    Article  ADS  Google Scholar 

  64. H. Weng, A. Ranjbar, Y. Liang, Z. Song, M. Khazaei, S. Yunoki, M. Arai, Y. Kawazoe, Z. Fang, and X. Dai, Phys. Rev. B 92, 075436 (2015).

    Article  ADS  Google Scholar 

  65. Y. Ma, L. Kou, X. Li, Y. Dai, S. C. Smith, and T. Heine, Phys. Rev. B 92, 085427 (2015).

    Article  ADS  Google Scholar 

  66. C. Si, K. H. Jin, J. Zhou, Z. Sun, and F. Liu, Nano Lett. 16, 6584 (2016).

    Article  ADS  Google Scholar 

  67. T. Wei, and Z. Zhang, Phys. Rev. B 104, 184503 (2021).

    Article  ADS  Google Scholar 

  68. R. Peng, H. C. Xu, S. Y. Tan, H. Y. Cao, M. Xia, X. P. Shen, Z. C. Huang, C. H. P. Wen, Q. Song, T. Zhang, B. P. Xie, X. G. Gong, and D. L. Feng, Nat. Commun. 5, 5044 (2014).

    Article  ADS  Google Scholar 

  69. S. Zeng, Y. Zhao, G. Li, and J. Ni, Phys. Rev. B 94, 024501 (2016).

    Article  ADS  Google Scholar 

  70. Y. Song, Z. Chen, Q. Zhang, H. Xu, X. Lou, X. Chen, X. Xu, X. Zhu, R. Tao, T. Yu, H. Ru, Y. Wang, T. Zhang, J. Guo, L. Gu, Y. Xie, R. Peng, and D. Feng, Nat. Commun. 12, 5926 (2021).

    Article  ADS  Google Scholar 

  71. G. Profeta, M. Calandra, and F. Mauri, Nat. Phys. 8, 131 (2012).

    Article  Google Scholar 

  72. S. He, J. He, W. Zhang, L. Zhao, D. Liu, X. Liu, D. Mou, Y. B. Ou, Q. Y. Wang, Z. Li, L. Wang, Y. Peng, Y. Liu, C. Chen, L. Yu, G. Liu, X. Dong, J. Zhang, C. Chen, Z. Xu, X. Chen, X. Ma, Q. Xue, and X. J. Zhou, Nat. Mater. 12, 605 (2013).

    Article  ADS  Google Scholar 

  73. J. Shiogai, Y. Ito, T. Mitsuhashi, T. Nojima, and A. Tsukazaki, Nat. Phys. 12, 42 (2015).

    Article  Google Scholar 

  74. B. Lei, J. H. Cui, Z. J. Xiang, C. Shang, N. Z. Wang, G. J. Ye, X. G. Luo, T. Wu, Z. Sun, and X. H. Chen, Phys. Rev. Lett. 116, 077002 (2016).

    Article  ADS  Google Scholar 

  75. P. Zhang, K. Yaji, T. Hashimoto, Y. Ota, T. Kondo, K. Okazaki, Z. Wang, J. Wen, G. D. Gu, H. Ding, and S. Shin, Science 360, 182 (2018).

    Article  ADS  Google Scholar 

  76. F. Yang, L. Miao, Z. F. Wang, M. Y. Yao, F. Zhu, Y. R. Song, M. X. Wang, J. P. Xu, A. V. Fedorov, Z. Sun, G. B. Zhang, C. Liu, F. Liu, D. Qian, C. L. Gao, and J. F. Jia, Phys. Rev. Lett. 109, 016801 (2012).

    Article  ADS  Google Scholar 

  77. I. K. Drozdov, A. Alexandradinata, S. Jeon, S. Nadj-Perge, H. Ji, R. J. Cava, B. Andrei Bernevig, and A. Yazdani, Nat. Phys. 10, 664 (2014).

    Article  Google Scholar 

  78. S. Kezilebieke, M. N. Huda, V. Vaňo, M. Aapro, S. C. Ganguli, O. J. Silveira, S. Głodzik, A. S. Foster, T. Ojanen, and P. Liljeroth, Nature 588, 424 (2020).

    Article  ADS  Google Scholar 

  79. W. Zhang, Z. Li, F. Li, H. Zhang, J. Peng, C. Tang, Q. Wang, K. He, X. Chen, L. Wang, X. Ma, and Q. K. Xue, Phys. Rev. B 89, 060506 (2014).

    Article  ADS  Google Scholar 

  80. J. J. Lee, F. T. Schmitt, R. G. Moore, S. Johnston, Y. T. Cui, W. Li, M. Yi, Z. K. Liu, M. Hashimoto, Y. Zhang, D. H. Lu, T. P. Devereaux, D. H. Lee, and Z. X. Shen, Nature 515, 245 (2014).

    Article  ADS  Google Scholar 

  81. S. Zhang, J. Guan, X. Jia, B. Liu, W. Wang, F. Li, L. Wang, X. Ma, Q. Xue, J. Zhang, E. W. Plummer, X. Zhu, and J. Guo, Phys. Rev. B 94, 081116 (2016).

    Article  ADS  Google Scholar 

  82. H. Zhang, D. Zhang, X. Lu, C. Liu, G. Zhou, X. Ma, L. Wang, P. Jiang, Q. K. Xue, and X. Bao, Nat. Commun. 8, 214 (2017).

    Article  ADS  Google Scholar 

  83. S. Zhang, T. Wei, J. Guan, Q. Zhu, W. Qin, W. Wang, J. Zhang, E. W. Plummer, X. Zhu, Z. Zhang, and J. Guo, Phys. Rev. Lett. 122, 066802 (2019).

    Article  ADS  Google Scholar 

  84. S. Tan, Y. Zhang, M. Xia, Z. Ye, F. Chen, X. Xie, R. Peng, D. Xu, Q. Fan, H. Xu, J. Jiang, T. Zhang, X. Lai, T. Xiang, J. Hu, B. Xie, and D. Feng, Nat. Mater. 12, 634 (2013).

    Article  ADS  Google Scholar 

  85. H. J. Conley, B. Wang, J. I. Ziegler, R. F. Haglund Jr., S. T. Pantelides, and K. I. Bolotin, Nano Lett. 13, 3626 (2013).

    Article  ADS  Google Scholar 

  86. R. Lou, M. Lei, W. Ding, W. Yang, X. Chen, R. Tao, S. Ding, X. Shen, Y. Yan, P. Cui, H. Xu, R. Peng, T. Zhang, Z. Zhang, and D. Feng, npj Quantum Mater. 6, 79 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Cui.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302800), the National Natural Science Foundation of China (Grant Nos. 11974323, and 12374458), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY170000), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB0510200), and the Anhui Provincial Key Research and Development Project (Grant No. 2023z04020008).

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Zhang, Z. & Cui, P. Topological and superconducting properties of monolayered CoN and CoP: A first-principles comparative study. Sci. China Phys. Mech. Astron. 67, 257011 (2024). https://doi.org/10.1007/s11433-023-2324-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2324-0

Navigation