Skip to main content
Log in

Synergy between CSST galaxy survey and gravitational-wave observation: Inferring the Hubble constant from dark standard sirens

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Gravitational waves (GWs) from compact binary coalescences encode the absolute luminosity distances of GW sources. Once the redshifts of GW sources are known, one can use the distance-redshift relation to constrain cosmological parameters. One way to obtain the redshifts is to localize GW sources by GW observations and then use galaxy catalogs to determine redshifts from a statistical analysis of redshift information of the potential host galaxies, commonly referred to as the dark siren method. The third-generation (3G) GW detectors are planned to work in the 2030s and will observe numerous compact binary coalescences. Using these GW events as dark sirens requires high-quality galaxy catalogs from future sky survey projects. The China Space Station Telescope (CSST) will be launched in 2024 and will observe billions of galaxies within a 17500 deg2 survey area with redshift up to z ∼ 4, providing photometric and spectroscopic galaxy catalogs. In this work, we simulate the CSST galaxy catalogs and the 5-year GW data from the 3G GW detectors and combine them to infer the Hubble constant (H0). Our results show that the measurement precision of H0 could reach the sub-percent level, meeting the standard of precision cosmology. We conclude that the synergy between CSST and the 3G GW detectors is of great significance in measuring the Hubble constant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. York, et al. (The SDSS Collaboration), Astron. J. 120, 1579 (2000), arXiv: astro-ph/0006396.

    Article  ADS  Google Scholar 

  2. P. A. Abell, et al. (LSST Science Collaborations), arXiv: 0912.0201.

  3. Ž. Ivezić, et al. (The LSST Collaboration), Astrophys. J. 873, 111 (2019), arXiv: 0805.2366.

    Article  ADS  Google Scholar 

  4. R. Laureijs, et al. (EUCLID Collaboration), arXiv: 1110.3193.

  5. Y. Cao, Y. Gong, X. M. Meng, C. K. Xu, X. Chen, Q. Guo, R. Li, D. Liu, Y. Xue, L. Cao, X. Fu, X. Zhang, S. Wang, and H. Zhan, Mon. Not. R. Astron. Soc. 480, 2178 (2018), arXiv: 1706.09586.

    Article  ADS  Google Scholar 

  6. Y. Cao, Y. Gong, D. Liu, A. Cooray, C. Feng, and X. Chen, Mon. Not. R. Astron. Soc. 511, 1830 (2022), arXiv: 2108.10181.

    Article  ADS  Google Scholar 

  7. Y. Cao, Y. Gong, Z. Y. Zheng, and C. Xu, Res. Astron. Astrophys. 22, 025019 (2022), arXiv: 2110.07088.

    Article  ADS  Google Scholar 

  8. Y. Gong, X. Liu, Y. Cao, X. Chen, Z. Fan, R. Li, X. D. Li, Z. Li, X. Zhang, and H. Zhan, Astrophys. J. 883, 203 (2019), arXiv: 1901.04634.

    Article  ADS  Google Scholar 

  9. X. Zhou, Y. Gong, X. M. Meng, Y. Cao, X. Chen, Z. Chen, W. Du, L. Fu, and Z. Luo, Mon. Not. R. Astron. Soc. 512, 4593 (2022), arXiv: 2112.08690.

    Article  ADS  Google Scholar 

  10. A. Chen, Y. Gong, F. Wu, Y. Wang, and X. Chen, Res. Astron. Astrophys. 22, 055021 (2022), arXiv: 2202.07571.

    Article  ADS  Google Scholar 

  11. H. Lin, Y. Gong, X. Chen, K. C. Chan, Z. Fan, and H. Zhan, Mon. Not. R. Astron. Soc. 515, 5743 (2022), arXiv: 2203.11429.

    Article  ADS  Google Scholar 

  12. Y. T. Xu, J. P. Dai, D. Zhao, and J. Q. Xia, Mon. Not. R. Astron. Soc. 515, 5587 (2022), arXiv: 2208.10832.

    Article  ADS  Google Scholar 

  13. F. Deng, Y. Gong, Y. Wang, S. Dong, Y. Cao, and X. Chen, Mon. Not. R. Astron. Soc. 515, 5894 (2022), arXiv: 2207.14566.

    Article  ADS  Google Scholar 

  14. X. Zhou, Y. Gong, X. M. Meng, X. Chen, Z. Chen, W. Du, L. Fu, and Z. Luo, Res. Astron. Astrophys. 22, 115017 (2022), arXiv: 2206.13696.

    Article  ADS  Google Scholar 

  15. Z. Wang, J. Yao, X. Liu, D. Liu, Z. Fan, and B. Hu, Mon. Not. R. Astron. Soc. 523, 3001 (2023), arXiv: 2207.07713.

    Article  ADS  Google Scholar 

  16. H. Miao, Y. Gong, X. Chen, Z. Huang, X. D. Li, and H. Zhan, Mon. Not. R. Astron. Soc. 519, 1132 (2022), arXiv: 2206.09822.

    Article  ADS  Google Scholar 

  17. S. Y. Li, Y. L. Li, T. Zhang, J. Vinkó, E. Regős, X. Wang, G. Xi, and H. Zhan, Sci. China-Phys. Mech. Astron. 66, 229511 (2023), arXiv: 2210.05450.

    Article  ADS  Google Scholar 

  18. D. Z. Liu, X. M. Meng, X. Z. Er, Z. H. Fan, M. Kilbinger, G. L. Li, R. Li, T. Schrabback, D. Scognamiglio, H. Y. Shan, C. Tao, Y. S. Ting, J. Zhang, S. H. Cheng, S. Farrens, L. P. Fu, H. Hildebrandt, X. Kang, J. P. Kneib, X. K. Liu, Y. Mellier, R. Nakajima, P. Schneider, J. L. Starck, C. L. Wei, A. H. Wright, and H. Zhan, Astron. Astrophys. 669, A128 (2023), arXiv: 2210.16341.

    Article  Google Scholar 

  19. B. F. Schutz, Nature 323, 310 (1986).

    Article  ADS  Google Scholar 

  20. D. E. Holz, and S. A. Hughes, Astrophys. J. 629, 15 (2005), arXiv: astro-ph/0504616.

    Article  ADS  Google Scholar 

  21. S. Nissanke, D. E. Holz, S. A. Hughes, N. Dalal, and J. L. Sievers, Astrophys. J. 725, 496 (2010), arXiv: 0904.1017.

    Article  ADS  Google Scholar 

  22. N. Tamanini, J. Phys.-Conf. Ser. 840, 012029 (2017), arXiv: 1612.02634.

    Article  Google Scholar 

  23. B. P. Abbott, et al. (The LIGO Scientific Collaboration, The Virgo Collaboration, The 1M2H Collaboration, The Dark Energy Camera GW-EM Collaboration, The DES Collaboration, The DLT40 Collaboration, The Las Cumbres Observatory Collaboration, The VIN-ROUGE Collaboration, and The MASTER Collaboration), Nature 551, 85 (2017), arXiv: 1710.05835.

    Article  ADS  Google Scholar 

  24. R. G. Cai, N. Tamanini, and T. Yang, J. Cosmol. Astropart. Phys. 5, 031 (2017), arXiv: 1703.07323.

    Article  ADS  Google Scholar 

  25. E. Di Valentino, and A. Melchiorri, Phys. Rev. D 97, 041301 (2018), arXiv: 1710.06370.

    Article  ADS  Google Scholar 

  26. W. Zhao, B. S. Wright, and B. Li, J. Cosmol. Astropart. Phys. 10, 052 (2018), arXiv: 1804.03066.

    Article  ADS  Google Scholar 

  27. E. Di Valentino, D. E. Holz, A. Melchiorri, and F. Renzi, Phys. Rev. D 98, 083523 (2018), arXiv: 1806.07463.

    Article  ADS  Google Scholar 

  28. W. Yang, S. Vagnozzi, E. Di Valentino, R. C. Nunes, S. Pan, and D. F. Mota, J. Cosmol. Astropart. Phys. 7, 037 (2019), arXiv: 1905.08286.

    Article  ADS  Google Scholar 

  29. M. Soares-Santos, et al. (The DES Collaboration, The LIGO Scientific Collaboration, and The Virgo Collaboration), Astrophys. J. 876, L7 (2019), arXiv: 1901.01540.

    Article  ADS  Google Scholar 

  30. L. F. Wang, Z. W. Zhao, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 11, 012 (2020), arXiv: 1907.01838.

    Article  ADS  Google Scholar 

  31. Z. W. Zhao, L. F. Wang, J. F. Zhang, and X. Zhang, Sci. Bull. 65, 1340 (2020), arXiv: 1912.11629.

    Article  Google Scholar 

  32. H. Y. Chen, P. S. Cowperthwaite, B. D. Metzger, and E. Berger, Astrophys. J. 908, L4 (2021), arXiv: 2011.01211.

    Article  ADS  Google Scholar 

  33. J. Z. Qi, S. J. Jin, X. L. Fan, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 12, 042 (2021), arXiv: 2102.01292.

    Article  ADS  Google Scholar 

  34. H. Y. Chen, C. J. Haster, S. Vitale, W. M. Farr, and M. Isi, Mon. Not. R. Astron. Soc. 513, 2152 (2022), arXiv: 2009.14057.

    Article  ADS  Google Scholar 

  35. L. F. Wang, S. J. Jin, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 65, 210411 (2022), arXiv: 2101.11882.

    Article  ADS  Google Scholar 

  36. S. J. Jin, R. Q. Zhu, L. F. Wang, H. L. Li, J. F. Zhang, and X. Zhang, Commun. Theor. Phys. 74, 105404 (2022), arXiv: 2204.04689.

    Article  ADS  Google Scholar 

  37. S. J. Jin, S. S. Xing, Y. Shao, J. F. Zhang, and X. Zhang, Chin. Phys. C 47, 065104 (2023), arXiv: 2301.06722.

    Article  ADS  Google Scholar 

  38. S. J. Jin, R. Q. Zhu, J. Y. Song, T. Han, J. F. Zhang, and X. Zhang, arXiv: 2309.11900.

  39. T. Han, S.-J. Jin, J.-F. Zhang, and X. Zhang, arXiv: 2309.14965.

  40. A. Nishizawa, K. Yagi, A. Taruya, and T. Tanaka, J. Phys.-Conf. Ser. 363, 012052 (2012), arXiv: 1204.2877.

    Article  Google Scholar 

  41. R. G. Cai, T. B. Liu, and S. J. Wang, Phys. Rev. D 97, 023027 (2018), arXiv: 1710.02425.

    Article  ADS  Google Scholar 

  42. H. Y. Chen, Phys. Rev. Lett. 125, 201301 (2020), arXiv: 2006.02779.

    Article  ADS  Google Scholar 

  43. B. P. Abbott, et al. (The LIGO Scientific Collaboration, and The Virgo Collaboration), Astrophys. J. 909, 218 (2021), arXiv: 1908.06060.

    Article  ADS  Google Scholar 

  44. L. G. Zhu, L. H. Xie, Y. M. Hu, S. Liu, E. K. Li, N. R. Napolitano, B. T. Tang, J. D. Zhang, and J. Mei, Sci. China-Phys. Mech. Astron. 65, 259811 (2022), arXiv: 2110.05224.

    Article  ADS  Google Scholar 

  45. S.-J. Jin, Y.-Z. Zhang, J.-Y. Song, J.-F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 67, 220412 (2024), arXiv: 2305.19714.

    Article  Google Scholar 

  46. S. J. Jin, T. N. Li, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 8, 070 (2023), arXiv: 2202.11882.

    Article  ADS  Google Scholar 

  47. B. P. Abbott, et al. (The LIGO Scientific Collaboration, and The Virgo Collaboration), Phys. Rev. Lett. 119, 161101 (2017), arXiv: 1710.05832.

    Article  ADS  Google Scholar 

  48. G. Dálya, G. Galgóczi, L. Dobos, Z. Frei, I. S. Heng, R. Macas, C. Messenger, P. Raffai, and R. S. de Souza, Mon. Not. R. Astron. Soc. 479, 2374 (2018), arXiv: 1804.05709.

    Article  ADS  Google Scholar 

  49. G. Dálya, R. Díaz, F. R. Bouchet, Z. Frei, J. Jasche, G. Lavaux, R. Macas, S. Mukherjee, M. Pálfi, R. S. de Souza, B. D. Wandelt, M. Bilicki, and P. Raffai, Mon. Not. R. Astron. Soc. 514, 1403 (2022), arXiv: 2110.06184.

    Article  ADS  Google Scholar 

  50. R. Abbott, et al. (The LIGO Scientific Collaboration, The Virgo Collaboration, and The KAGRA Collaboration), Astrophys. J. 949, 76 (2023), arXiv: 2111.03604.

    Article  ADS  Google Scholar 

  51. M. Punturo, M. Abernathy, F. Acernese, B. Allen, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, N. Beveridge, S. Birindelli, S. Bose, L. Bosi, S. Braccini, C. Bradaschia, T. Bulik, E. Calloni, G. Cella, E. C. Mottin, S. Chelkowski, A. Chincarini, J. Clark, E. Coccia, C. Colacino, J. Colas, A. Cumming, L. Cunningham, E. Cuoco, S. Danilishin, K. Danzmann, G. De Luca, R. De Salvo, T. Dent, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets, V. Fafone, P. Falferi, R. Flaminio, J. Franc, F. Frasconi, A. Freise, P. Fulda, J. Gair, G. Gemme, A. Gennai, A. Giazotto, K. Glampedakis, M. Granata, H. Grote, G. Guidi, G. Hammond, M. Hannam, J. Harms, D. Heinert, M. Hendry, I. Heng, E. Hennes, S. Hild, J. Hough, S. Husa, S. Huttner, G. Jones, F. Khalili, K. Kokeyama, K. Kokkotas, B. Krishnan, M. Lorenzini, H. Lück, E. Majorana, I. Mandel, V. Mandic, I. Martin, C. Michel, Y. Minenkov, N. Morgado, S. Mosca, B. Mours, H. MüllerCEbhardt, P. Murray, R. Nawrodt, J. Nelson, R. Oshaughnessy, C. D. Ott, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti, D. Passuello, L. Pinard, R. Poggiani, P. Popolizio, M. Prato, P. Puppo, D. Rabeling, P. Rapagnani, J. Read, T. Regimbau, H. Rehbein, S. Reid, L. Rezzolla, F. Ricci, F. Richard, A. Rocchi, S. Rowan, A. Rüdiger, B. Sassolas, B. Sathyaprakash, R. Schnabel, C. Schwarz, P. Seidel, A. Sintes, K. Somiya, F. Speirits, K. Strain, S. Strigin, P. Sutton, S. Tarabrin, A. Thüring, J. van den Brand, C. van Leewen, M. van Veggel, C. van den Broeck, A. Vecchio, J. Veitch, F. Vetrano, A. Vicere, S. Vyatchanin, B. Willke, G. Woan, P. Wolfango, and K. Yamamoto, Class. Quantum Grav. 27, 194002 (2010).

    Article  ADS  Google Scholar 

  52. B. P. Abbott, et al. (LIGO Scientic Collaboration), and J. Harms, Class. Quantum Grav. 34, 044001 (2017), arXiv: 1607.08697.

    Article  ADS  Google Scholar 

  53. L. F. Wang, X. N. Zhang, J. F. Zhang, and X. Zhang, Phys. Lett. B 782, 87 (2018), arXiv: 1802.04720.

    Article  ADS  Google Scholar 

  54. X. N. Zhang, L. F. Wang, J. F. Zhang, and X. Zhang, Phys. Rev. D 99, 063510 (2019), arXiv: 1804.08379.

    Article  ADS  Google Scholar 

  55. J. F. Zhang, M. Zhang, S. J. Jin, J. Z. Qi, and X. Zhang, J. Cosmol. Astropart. Phys. 9, 068 (2019), arXiv: 1907.03238.

    Article  ADS  Google Scholar 

  56. X. Zhang, Sci. China-Phys. Mech. Astron. 62, 110431 (2019), arXiv: 1905.11122.

    Article  ADS  Google Scholar 

  57. J. F. Zhang, H. Y. Dong, J. Z. Qi, and X. Zhang, Eur. Phys. J. C 80, 217 (2020), arXiv: 1906.07504.

    Article  ADS  Google Scholar 

  58. H. L. Li, D. Z. He, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 6, 038 (2020), arXiv: 1908.03098.

    ADS  Google Scholar 

  59. S. J. Jin, D. Z. He, Y. Xu, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 3, 051 (2020), arXiv: 2001.05393.

    Article  ADS  Google Scholar 

  60. S. J. Jin, L. F. Wang, P. J. Wu, J. F. Zhang, and X. Zhang, Phys. Rev. D 104, 103507 (2021), arXiv: 2106.01859.

    Article  ADS  Google Scholar 

  61. W. T. Hou, J. Z. Qi, T. Han, J. F. Zhang, S. Cao, and X. Zhang, J. Cosmol. Astropart. Phys. 5, 017 (2023), arXiv: 2211.10087.

    Article  ADS  Google Scholar 

  62. P. J. Wu, Y. Shao, S. J. Jin, and X. Zhang, J. Cosmol. Astropart. Phys. 6, 052 (2023), arXiv: 2202.09726.

    Article  ADS  Google Scholar 

  63. M. Evans, R. X. Adhikari, C. Afle, S. W. Ballmer, S. Biscoveanu, S. Borhanian, D. A. Brown, Y. Chen, R. Eisenstein, A. Gruson, A. Gupta, E. D. Hall, R. Huxford, B. Kamai, R. Kashyap, J. S. Kissel, K. Kuns, P. Landry, A. Lenon, G. Lovelace, L. McCuller, K. K. Y. Ng, A. H. Nitz, J. Read, B. S. Sathyaprakash, D. H. Shoemaker, B. J. J. Slagmolen, J. R. Smith, V. Srivastava, L. Sun, S. Vitale, and R. Weiss, arXiv: 2109.09882.

  64. H. Zhan, Chin. Sci. Bull. 66, 1290 (2021).

    Article  Google Scholar 

  65. M. M. Zhao, D. Z. He, J. F. Zhang, and X. Zhang, Phys. Rev. D 96, 043520 (2017), arXiv: 1703.08456.

    Article  ADS  Google Scholar 

  66. X. Zhang, Sci. China-Phys. Mech. Astron. 60, 060421 (2017), arXiv: 1702.05010.

    Article  ADS  Google Scholar 

  67. R. Y. Guo, and X. Zhang, Eur. Phys. J. C 77, 882 (2017), arXiv: 1704.04784.

    Article  ADS  Google Scholar 

  68. W. Yang, S. Pan, E. Di Valentino, R. C. Nunes, S. Vagnozzi, and D. F. Mota, J. Cosmol. Astropart. Phys. 9, 019 (2018), arXiv: 1805.08252.

    Article  ADS  Google Scholar 

  69. R. Y. Guo, L. Zhang, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 62, 030411 (2019), arXiv: 1801.02187.

    Article  Google Scholar 

  70. R. Y. Guo, J. F. Zhang, and X. Zhang, J. Cosmol. Astropart. Phys. 2, 054 (2019), arXiv: 1809.02340.

    Article  ADS  Google Scholar 

  71. E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Phys. Rev. D 101, 063502 (2020), arXiv: 1910.09853.

    Article  ADS  Google Scholar 

  72. E. Di Valentino, A. Melchiorri, O. Mena, and S. Vagnozzi, Phys. Dark Universe 30, 100666 (2020), arXiv: 1908.04281.

    Article  Google Scholar 

  73. M. X. Liu, Z. Q. Huang, X. L. Luo, H. T. Miao, N. K. Singh, and L. Huang, Sci. China-Phys. Mech. Astron. 63, 290405 (2020), arXiv: 1912.00190.

    Article  ADS  Google Scholar 

  74. X. Zhang, and Q. G. Huang, Sci. China-Phys. Mech. Astron. 63, 290402 (2020), arXiv: 1911.09439.

    Article  ADS  Google Scholar 

  75. Q. H. Ding, T. Nakama, and Y. Wang, Sci. China-Phys. Mech. Astron. 63, 290403 (2020), arXiv: 1912.12600.

    Article  ADS  Google Scholar 

  76. L. Feng, H. L. Li, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 220401 (2020), arXiv: 1903.08848.

    Article  ADS  Google Scholar 

  77. R. Y. Guo, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 290406 (2020), arXiv: 1910.13944.

    Article  ADS  Google Scholar 

  78. Y. D. Xu, and X. Zhang, Sci. China-Phys. Mech. Astron. 63, 270431 (2020), arXiv: 2002.00572.

    Article  ADS  Google Scholar 

  79. H. Li, and X. Zhang, Sci. Bull. 65, 1419 (2020), arXiv: 2005.10458.

    Article  Google Scholar 

  80. L. Y. Gao, Z. W. Zhao, S. S. Xue, and X. Zhang, J. Cosmol. Astropart. Phys. 7, 005 (2021), arXiv: 2101.10714.

    Article  ADS  Google Scholar 

  81. R. G. Cai, Z. K. Guo, L. Li, S. J. Wang, and W. W. Yu, Phys. Rev. D 103, 121302 (2021), arXiv: 2102.02020.

    Article  ADS  Google Scholar 

  82. S. Vagnozzi, Phys. Rev. D 104, 063524 (2021), arXiv: 2105.10425.

    Article  ADS  Google Scholar 

  83. M. D. Cao, J. Zheng, J. Z. Qi, X. Zhang, and Z. H. Zhu, Astrophys. J. 934, 108 (2022), arXiv: 2112.14564.

    Article  ADS  Google Scholar 

  84. L. F. Wang, J. H. Zhang, D. Z. He, J. F. Zhang, and X. Zhang, Mon. Not. R. Astron. Soc. 514, 1433 (2022), arXiv: 2102.09331.

    Article  ADS  Google Scholar 

  85. S. Vagnozzi, F. Pacucci, and A. Loeb, J. High Energy Astrophys. 36, 27 (2022), arXiv: 2105.10421.

    Article  ADS  Google Scholar 

  86. M. Kamionkowski, and A. G. Riess, arXiv: 2211.04492.

  87. Z. K. Guo, Sci. China-Phys. Mech. Astron. 65, 210431 (2022).

    Article  ADS  Google Scholar 

  88. P. J. Wu, Y. Li, J. F. Zhang, and X. Zhang, Sci. China-Phys. Mech. Astron. 66, 270413 (2023), arXiv: 2212.07681.

    Article  ADS  Google Scholar 

  89. J.-G. Zhang, Z.-W. Zhao, Y. Li, J.-F. Zhang, D. Li, and X. Zhang, Sci. China-Phys. Mech. Astron. 66, 120412 (2023), arXiv: 2307.01605.

    Article  ADS  Google Scholar 

  90. Z.-G. Dai, Sci. China-Phys. Mech. Astron. 66, 120431 (2023).

    Article  ADS  Google Scholar 

  91. X. Chen, Sci. China-Phys. Mech. Astron. 66, 270431 (2023).

    Article  ADS  Google Scholar 

  92. N. Aghanim, et al. (Planck Collaboration), Astron. Astrophys. 641, A1 (2020), arXiv: 1807.06205.

    Article  Google Scholar 

  93. P. Schechter, Astrophys. J. 203, 297 (1976).

    Article  ADS  Google Scholar 

  94. N. Gehrels, J. K. Cannizzo, J. Kanner, M. M. Kasliwal, S. Nissanke, and L. P. Singer, Astrophys. J. 820, 136 (2016), arXiv: 1508.03608.

    Article  ADS  Google Scholar 

  95. R. Wang, W. H. Ruan, Q. Yang, Z. K. Guo, R. G. Cai, and B. Hu, Natl. Sci. Rev. 9, nwab054 (2022), arXiv: 2010.14732.

    Article  Google Scholar 

  96. H. Qu, Z. Yuan, A. Doliva-Dolinsky, N. F. Martin, X. Kang, C. Wei, G. Li, Y. Luo, J. Chang, C. Tsai, Z. Fan, and R. Ibata, Mon. Not. R. Astron. Soc. 523, 876 (2023), arXiv: 2212.10804.

    Article  ADS  Google Scholar 

  97. I. V. Chilingarian, A. L. Melchior, and I. Y. Zolotukhin, Mon. Not. R. Astron. Soc. 405, 1409 (2010), arXiv: 1002.2360.

    Article  ADS  Google Scholar 

  98. J. Yao, H. Shan, R. Li, Y. Xu, D. Fan, D. Liu, P. Zhang, Y. Yu, B. Hu, N. Li, Z. Fan, H. Xu, and W. Guo, arXiv: 2304.04489.

  99. R. Abbott, et al. (The LIGO Scientific Collaboration, and The Virgo Collaboration), Astrophys. J. Lett. 913, L7 (2021), arXiv: 2010.14533.

    Article  ADS  Google Scholar 

  100. R. Abbott, et al. (The LIGO Scientific Collaboration, The Virgo Collaboration, and The KAGRA Collaboration), Phys. Rev. X 13, 011048 (2023), arXiv: 2111.03634.

    Google Scholar 

  101. E. Belgacem, Y. Dirian, S. Foffa, E. J. Howell, M. Maggiore, and T. Regimbau, J. Cosmol. Astropart. Phys. 8, 015 (2019), arXiv: 1907.01487.

    Article  ADS  Google Scholar 

  102. S. Vitale, W. M. Farr, K. K. Y. Ng, and C. L. Rodriguez, Astrophys. J. 886, L1 (2019), arXiv: 1808.00901.

    Article  ADS  Google Scholar 

  103. T. Yang, J. Cosmol. Astropart. Phys. 5, 044 (2021), arXiv: 2103.01923.

    Article  ADS  Google Scholar 

  104. P. Madau, and M. Dickinson, Annu. Rev. Astron. Astrophys. 52, 415 (2014), arXiv: 1403.0007.

    Article  ADS  Google Scholar 

  105. W. Zhao, and L. Wen, Phys. Rev. D 97, 064031 (2018), arXiv: 1710.05325.

    Article  ADS  Google Scholar 

  106. B. P. Abbott, et al. (The LIGO Scientific Collaboration, and The Virgo Collaboration), Phys. Rev. X 9, 031040 (2019), arXiv: 1811.12907.

    Google Scholar 

  107. G. Ashton, M. Hübner, P. D. Lasky, C. Talbot, K. Ackley, S. Biscoveanu, Q. Chu, A. Divakarla, P. J. Easter, B. Goncharov, F. H. Vivanco, J. Harms, M. E. Lower, G. D. Meadors, D. Melchor, E. Payne, M. D. Pitkin, J. Powell, N. Sarin, R. J. E. Smith, and E. Thrane, Astrophys. J. Suppl. Ser. 241, 27 (2019), arXiv: 1811.02042.

    Article  ADS  Google Scholar 

  108. S. Borhanian, Class. Quantum Grav. 38, 175014 (2021), arXiv: 2010.15202.

    Article  ADS  MathSciNet  Google Scholar 

  109. M. Di Giovanni, C. Giunchi, G. Saccorotti, A. Berbellini, L. Boschi, M. Olivieri, R. De Rosa, L. Naticchioni, G. Oggiano, M. Carpinelli, D. D’Urso, S. Cuccuru, V. Sipala, E. Calloni, L. Di Fiore, A. Grado, C. Migoni, A. Cardini, F. Paoletti, I. Fiori, J. Harms, E. Majorana, P. Rapagnani, F. Ricci, and M. Punturo, Seismological Res. Lett. 92, 352 (2021).

    Article  Google Scholar 

  110. W. Zhao, C. van den Broeck, D. Baskaran, and T. G. F. Li, Phys. Rev. D 83, 023005 (2011), arXiv: 1009.0206.

    Article  ADS  Google Scholar 

  111. L. Blanchet, and B. R. Iyer, Phys. Rev. D 71, 024004 (2005), arXiv: gr-qc/0409094.

    Article  ADS  Google Scholar 

  112. B. S. Sathyaprakash, and B. F. Schutz, Living Rev. Relativ. 12, 2 (2009), arXiv: 0903.0338.

    Article  ADS  Google Scholar 

  113. S. Hild, M. Abernathy, F. Acernese, P. Amaro-Seoane, N. Andersson, K. Arun, F. Barone, B. Barr, M. Barsuglia, M. Beker, N. Beveridge, S. Birindelli, S. Bose, L. Bosi, S. Braccini, C. Bradaschia, T. Bulik, E. Calloni, G. Cella, E. C. Mottin, S. Chelkowski, A. Chincarini, J. Clark, E. Coccia, C. Colacino, J. Colas, A. Cumming, L. Cunningham, E. Cuoco, S. Danilishin, K. Danzmann, R. De Salvo, T. Dent, R. De Rosa, L. Di Fiore, A. Di Virgilio, M. Doets, V. Fafone, P. Falferi, R. Flaminio, J. Franc, F. Frasconi, A. Freise, D. Friedrich, P. Fulda, J. Gair, G. Gemme, E. Genin, A. Gennai, A. Giazotto, K. Glampedakis, C. Gräf, M. Granata, H. Grote, G. Guidi, A. Gurkovsky, G. Hammond, M. Hannam, J. Harms, D. Heinert, M. Hendry, I. Heng, E. Hennes, J. Hough, S. Husa, S. Huttner, G. Jones, F. Khalili, K. Kokeyama, K. Kokkotas, B. Krishnan, T. G. F. Li, M. Lorenzini, H. Lück, E. Majorana, I. Mandel, V. Mandic, M. Mantovani, I. Martin, C. Michel, Y. Minenkov, N. Morgado, S. Mosca, B. Mours, H. MüllerCEbhardt, P. Murray, R. Nawrodt, J. Nelson, R. Oshaughnessy, C. D. Ott, C. Palomba, A. Paoli, G. Parguez, A. Pasqualetti, R. Passaquieti, D. Passuello, L. Pinard, W. Plastino, R. Poggiani, P. Popolizio, M. Prato, M. Punturo, P. Puppo, D. Rabeling, P. Rapagnani, J. Read, T. Regimbau, H. Rehbein, S. Reid, F. Ricci, F. Richard, A. Rocchi, S. Rowan, A. Rüdiger, L. Santamaría, B. Sassolas, B. Sathyaprakash, R. Schnabel, C. Schwarz, P. Seidel, A. Sintes, K. Somiya, F. Speirits, K. Strain, S. Strigin, P. Sutton, S. Tarabrin, A. Thüring, J. van den Brand, M. van Veggel, C. van den Broeck, A. Vecchio, J. Veitch, F. Vetrano, A. Vicere, S. Vyatchanin, B. Willke, G. Woan, and K. Yamamoto, Class. Quantum Grav. 28, 094013 (2011), arXiv: 1012.0908.

    Article  ADS  Google Scholar 

  114. M. Vallisneri, Phys. Rev. D 77, 042001 (2008), arXiv: grqc/0703086.

    Article  ADS  Google Scholar 

  115. N. Tamanini, C. Caprini, E. Barausse, A. Sesana, A. Klein, and A. Petiteau, J. Cosmol. Astropart. Phys. 4, 002 (2016), arXiv: 1601.07112.

    Article  ADS  Google Scholar 

  116. J. Yu, Y. Wang, W. Zhao, and Y. Lu, Mon. Not. R. Astron. Soc. 498, 1786 (2020), arXiv: 2003.06586.

    Article  ADS  Google Scholar 

  117. H. Y. Chen, M. Fishbach, and D. E. Holz, Nature 562, 545 (2018), arXiv: 1712.06531.

    Article  ADS  Google Scholar 

  118. I. Mandel, W. M. Farr, and J. R. Gair, Mon. Not. R. Astron. Soc. 486, 1086 (2019), arXiv: 1809.02063.

    Article  ADS  Google Scholar 

  119. R. Gray, I. M. Hernandez, H. Qi, A. Sur, P. R. Brady, H. Y. Chen, W. M. Farr, M. Fishbach, J. R. Gair, A. Ghosh, D. E. Holz, S. Mastrogiovanni, C. Messenger, D. A. Steer, and J. Veitch, Phys. Rev. D 101, 122001 (2020), arXiv: 1908.06050.

    Article  ADS  Google Scholar 

  120. S. Borhanian, A. Dhani, A. Gupta, K. G. Arun, and B. S. Sathyaprakash, Astrophys. J. 905, L28 (2020), arXiv: 2007.02883.

    Article  ADS  Google Scholar 

  121. L. G. Zhu, and X. Chen, Astrophys. J. 948, 26 (2023), arXiv: 2302.10621.

    Article  ADS  Google Scholar 

  122. L. G. Zhu, Y. M. Hu, H. T. Wang, J. Zhang, X. D. Li, M. Hendry, and J. Mei, Phys. Rev. Res. 4, 013247 (2022), arXiv: 2104.11956.

    Article  Google Scholar 

  123. L.-F. Wang, Y. Shao, J.-F. Zhang, and X. Zhang, arXiv: 2201.00607.

  124. B. Kocsis, Z. Frei, Z. Haiman, and K. Menou, Astrophys. J. 637, 27 (2006), arXiv: astro-ph/0505394.

    Article  ADS  Google Scholar 

  125. J. He, Phys. Rev. D 100, 023527 (2019), arXiv: 1903.11254.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Zhang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National SKA Program of China (Grant Nos. 2022SKA0110200, and 2022SKA0110203), the National Natural Science Foundation of China (Grant Nos. 11975072, 11875102, and 11835009), the science research grants from the China Manned Space Project (Grant No. CMS-CSST-2021-B01), and the 111 Project (Grant No. B16009). We are grateful to Yan Gong, Furen Deng, Muxin Liu, Jiming Yu, and Yue Shao for fruitful discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, JY., Wang, LF., Li, Y. et al. Synergy between CSST galaxy survey and gravitational-wave observation: Inferring the Hubble constant from dark standard sirens. Sci. China Phys. Mech. Astron. 67, 230411 (2024). https://doi.org/10.1007/s11433-023-2260-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2260-2

Navigation