Skip to main content
Log in

Atom-referenced and stabilized soliton microcomb

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

For the applications of the frequency comb in microresonators, it is essential to obtain a fully frequency-stabilized microcomb laser source. In this study, we present a system for generating a fully atom-referenced stabilized soliton microcomb. The pump light around 1560.48 nm is locked to an ultra-low-expansion (ULE) cavity. This pump light is then frequency-doubled and referenced to the atomic transition of 87Rb. The repetition rate of the soliton microcomb is injection-locked to an atomic-clock-stabilized radio frequency (RF) source, leading to mHz stabilization at 1 s. As a result, all comb lines have been frequency-stabilized based on the atomic reference and the ULE cavity, achieving a very high precision of approximately 18 Hz at 1 s, corresponding to the frequency stability of 9.5 × 10−14. Our approach provides a fully stabilized microcomb experiment scheme with no requirement of f-2f technique, which could be easily implemented and generalized to various photonic platforms, thus paving the way towards the ultraprecise optical sources for high precision spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, Science 361, 567 (2018).

    Article  Google Scholar 

  2. T. Herr, V. Brasch, J. D. Jost, C. Y. Wang, N. M. Kondratiev, M. L. Gorodetsky, and T. J. Kippenberg, Nat. Photon. 8, 145 (2014).

    Article  ADS  Google Scholar 

  3. W. Wang, L. Wang, and W. Zhang, Adv. Photon. 2, 034001 (2020).

    Article  ADS  Google Scholar 

  4. J. Liu, F. Bo, L. Chang, C. H. Dong, X. Ou, B. Regan, X. Shen, Q. Song, B. Yao, W. Zhang, C. L. Zou, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 65, 104201 (2022).

    Article  ADS  Google Scholar 

  5. C. Wang, J. Li, A. Yi, Z. Fang, L. Zhou, Z. Wang, R. Niu, Y. Chen, J. Zhang, Y. Cheng, J. Liu, C.-H. Dong, and X. Ou, Light Sci. Appl. 11, 341 (2022).

    Article  ADS  Google Scholar 

  6. B. Wang, J. S. Morgan, K. Sun, M. Jahanbozorgi, Z. Yang, M. Wood-son, S. Estrella, A. Beling, and Xu Yi, Light Sci. Appl. 10, 4 (2021).

    Article  ADS  Google Scholar 

  7. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, Science 359, 887 (2018).

    Article  ADS  Google Scholar 

  8. J. Wang, Z. Lu, W. Wang, F. Zhang, J. Chen, Y. Wang, J. Zheng, S. T. Chu, W. Zhao, B. E. Little, X. Qu, and W. Zhang, Photon. Res. 8, 1964 (2020).

    Article  Google Scholar 

  9. M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, Science 354, 600 (2016).

    Article  ADS  Google Scholar 

  10. A. Dutt, C. Joshi, X. Ji, J. Cardenas, Y. Okawachi, K. Luke, A. L. Gaeta, and M. Lipson, Sci. Adv. 4, e1701858 (2018).

    Article  ADS  Google Scholar 

  11. M. Yu, Y. Okawachi, A. G. Griffith, N. Picque, M. Lipson, and A. L. Gaeta, Nat. Commun. 9, 1869 (2018).

    Article  ADS  Google Scholar 

  12. Q. F. Yang, B. Shen, H. Wang, M. Tran, Z. Zhang, K. Y. Yang, L. Wu, C. Bao, J. Bowers, A. Yariv, and K. Vahala, Science 363, 965 (2019).

    Article  ADS  Google Scholar 

  13. Z. L. Newman, V. Maurice, T. Drake, J. R. Stone, T. C. Briles, D. T. Spencer, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, B. Shen, M. G. Suh, K. Y. Yang, C. Johnson, D. M. S. Johnson, L. Hollberg, K. J. Vahala, K. Srinivasan, S. A. Diddams, J. Kitching, S. B. Papp, and M. T. Hum-mon, Optica 6, 680 (2019).

    Article  ADS  Google Scholar 

  14. F.-X. Wang, W. Wang, R. Niu, X. Wang, C.-L. Zou, C.-H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z.-Q. Yin, D.-Y. He, W. Zhang, W. Zhao, Z.-Fu. Han, G.-C. Guo, and W. Chen, Laser Photon. Rev. 14, 1900190 (2020).

    Article  ADS  Google Scholar 

  15. H.-J. Chen, Q.-X. Ji, H. Wang, Q.-F. Yang, Q.-T. Cao, Q. Gong, X. Yi, and Y.-F. Xiao, Nat. Commun. 11, 2336 (2020).

    Article  ADS  Google Scholar 

  16. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, Nature 546, 274 (2017).

    Article  ADS  Google Scholar 

  17. B. Corcoran, M. Tan, X. Xu, A. Boes, J. Wu, T. G. Nguyen, S. T. Chu, B. E. Little, R. Morandotti, A. Mitchell, and D. J. Moss, Nat. Commun. 11, 2568 (2020).

    Article  ADS  Google Scholar 

  18. W. Liang, D. Eliyahu, V. S. Ilchenko, A. A. Savchenkov, A. B. Matsko, D. Seidel, and L. Maleki, Nat. Commun. 6, 7957 (2015).

    Article  ADS  Google Scholar 

  19. J. Liu, E. Lucas, A. S. Raja, J. He, J. Riemensberger, R. N. Wang, M. Karpov, H. Guo, R. Bouchand, and T. J. Kippenberg, Nat. Photon. 14, 486 (2020).

    Article  ADS  Google Scholar 

  20. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Koml-jenovic, L. Chang, S. H. Lee, D. Y. Oh, M. G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, Nature 557, 81 (2018).

    Article  ADS  Google Scholar 

  21. A. Rao, G. Moille, X. Lu, D. A. Westly, D. Sacchetto, M. Geiselmann, M. Zervas, S. B. Papp, J. Bowers, and K. Srinivasan, Light Sci. Appl. 10, 109 (2021).

    Article  ADS  Google Scholar 

  22. Y. Bai, M. Zhang, Q. Shi, S. Ding, Y. Qin, Z. Xie, X. Jiang, and M. Xiao, Phys. Rev. Lett. 126, 063901 (2021).

    Article  ADS  Google Scholar 

  23. T. Tan, Z. Yuan, H. Zhang, G. Yan, S. Zhou, N. An, B. Peng, G. Soavi, Y. Rao, and B. Yao, Nat. Commun. 12, 6716 (2021).

    Article  ADS  Google Scholar 

  24. E. Obrzud, M. Rainer, A. Harutyunyan, M. H. Anderson, J. Liu, M. Geiselmann, B. Chazelas, S. Kundermann, S. Lecomte, M. Cecconi, A. Ghedina, E. Molinari, F. Pepe, F. Wildi, F. Bouchy, T. J. Kippenberg, and T. Herr, Nat. Photon. 13, 31 (2019).

    Article  ADS  Google Scholar 

  25. R. Niu, S. Wan, J. Li, R.-C. Zhao, C.-L. Zou, G.-C. Guo, and C.-H. Dong, IEEE Photon. J. 13, 6801204 (2021).

    Google Scholar 

  26. R. Niu, M. Li, S. Wan, Y. R. Sun, S. M. Hu, C. L. Zou, G. C. Guo, and C. H. Dong, Nat. Commun. 14, 169 (2023).

    Article  ADS  Google Scholar 

  27. Y. Wang, Z. Wang, X. Wang, W. Shao, L. Huang, B. Liang, B. E. Little, S. T. Chu, W. Zhao, W. Wang, and W. Zhang, Sci. China-Phys. Mech. Astron. 65, 294211 (2022).

    Article  ADS  Google Scholar 

  28. J. R. Stone, T. C. Briles, T. E. Drake, D. T. Spencer, D. R. Carlson, S. A. Diddams, and S. B. Papp, Phys. Rev. Lett. 121, 063902 (2018).

    Article  ADS  Google Scholar 

  29. P. Del’Haye, O. Arcizet, A. Schliesser, R. Holzwarth, and T. J. Kippenberg, Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  30. T. Tetsumoto, J. Jiang, M. E. Fermann, G. Navickaite, M. Geiselmann, and A. Rolland, OSA Continuum 4, 1348 (2021).

    Article  Google Scholar 

  31. Q. F. Yang, Q. X. Ji, L. Wu, B. Shen, H. Wang, C. Bao, Z. Yuan, and K. Vahala, Nat. Commun. 12, 1442 (2021).

    Article  ADS  Google Scholar 

  32. W. Weng, E. Lucas, G. Lihachev, V. E. Lobanov, H. Guo, M. L. Gorodetsky, and T. J. Kippenberg, Phys. Rev. Lett. 122, 013902 (2019).

    Article  ADS  Google Scholar 

  33. D. C. Cole, J. R. Stone, M. Erkintalo, K. Y. Yang, X. Yi, K. J. Vahala, and S. B. Papp, Optica 5, 1304 (2018).

    Article  ADS  Google Scholar 

  34. L. Stern, J. R. Stone, S. Kang, D. C. Cole, M. G. Suh, C. Fredrick, Z. Newman, K. Vahala, J. Kitching, S. A. Diddams, and S. B. Papp, Sci. Adv. 6, eaax6230 (2020).

    Article  ADS  Google Scholar 

  35. J. Kitching, Appl. Phys. Rev. 5, 031302 (2018).

    Article  ADS  Google Scholar 

  36. X. Wang, P. Xie, W. Wang, Y. Wang, Z. Lu, L. Wang, S. T. Chu, B. E. Little, W. Zhao, and W. Zhang, Photon. Res. 9, 66 (2021).

    Article  ADS  Google Scholar 

  37. Z. Lu, H. J. Chen, W. Wang, L. Yao, Y. Wang, Y. Yu, B. E. Little, S. T. Chu, Q. Gong, W. Zhao, X. Yi, Y. F. Xiao, and W. Zhang, Nat. Commun. 12, 3179 (2021).

    Article  ADS  Google Scholar 

  38. J. Xie, J. Q. Wang, Z. B. Wang, X. X. Hu, X. Guo, R. Niu, J. B. Surya, J. Z. Zhang, C. H. Dong, G. C. Guo, H. X. Tang, and C. L. Zou, Opt. Lett. 44, 1150 (2019).

    Article  ADS  Google Scholar 

  39. E. D. Black, Am. J. Phys. 69, 79 (2001).

    Article  ADS  Google Scholar 

  40. Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S. W. Huang, K. Qiu, C. W. Wong, and H. Zhou, Opt. Lett. 43, 2406 (2018).

    Article  ADS  Google Scholar 

  41. S. Zhang, J. M. Silver, L. Del Bino, F. Copie, M. T. M. Woodley, G. N. Ghalanos, A. Ø. Svela, N. Moroney, and P. Del’Haye, Optica 6, 206 (2019).

    Article  ADS  Google Scholar 

  42. H. Zhou, Y. Geng, W. Cui, S. W. Huang, Q. Zhou, K. Qiu, and C. Wei Wong, Light Sci. Appl. 8, 50 (2019).

    Article  ADS  Google Scholar 

  43. R. Niu, S. Wan, Z. Y. Wang, J. Li, W. Q. Wang, W. F. Zhang, G. C. Guo, C. L. Zou, and C. H. Dong, IEEE Photon. Technol. Lett. 33, 788 (2021).

    Article  ADS  Google Scholar 

  44. W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, and W. Zhao, Opt. Lett. 43, 2002 (2018).

    Article  ADS  Google Scholar 

  45. S. Wan, R. Niu, Z. Y. Wang, J. L. Peng, M. Li, J. Li, G. C. Guo, C. L. Zou, and C. H. Dong, Photon. Res. 8, 1342 (2020).

    Article  Google Scholar 

  46. S. Camatel, and V. Ferrero, J. Lightwave Technol. 26, 3048 (2008).

    Article  ADS  Google Scholar 

  47. T. E. Drake, T. C. Briles, J. R. Stone, D. T. Spencer, D. R. Carlson, D. D. Hickstein, Q. Li, D. Westly, K. Srinivasan, S. A. Diddams, and S. B. Papp, Phys. Rev. X 9, 031023 (2019).

    Google Scholar 

  48. M. T. Hummon, S. Kang, D. G. Bopp, Q. Li, D. A. Westly, S. Kim, C. Fredrick, S. A. Diddams, K. Srinivasan, V. Aksyuk, and J. E. Kitching, Optica 5, 443 (2018).

    Article  ADS  Google Scholar 

  49. J. Guo, C. A. McLemore, C. Xiang, D. Lee, L. Wu, W. Jin, M. Kelleher, N. Jin, D. Mason, L. Chang, A. Feshali, M. Paniccia, P. T. Rakich, K. J. Vahala, S. A. Diddams, F. Quinlan, and J. E. Bowers, Sci. Adv. 8, eabp9006 (2022).

    Article  Google Scholar 

  50. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, Nature 568, 373 (2019).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chang-Ling Zou, Yun-Feng Xiao, Wen-Fu Zhang or Chun-Hua Dong.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Key Research and Development Program of China (Grant No. 2020YFB2205801), the National Natural Science Foundation of China (Grant Nos. 12293052, 12293050, 11934012, 12104442, 12304435, and 92050109), the CAS Project for Young Scientists in Basic Research (Grant No. YSBR-069), the Fundamental Research Funds for the Central Universities, and the China Postdoctoral Science Foundation (Grant No. 2023M733414). Wei-Qiang Wang, and Wen-Fu Zhang acknowledge the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB24030600). This work was partially carried out at the USTC Center for Micro and Nanoscale Research and Fabrication. The authors thank Qi-Fan Yang, and Jin-Ming Cui.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niu, R., Wan, S., Hua, TP. et al. Atom-referenced and stabilized soliton microcomb. Sci. China Phys. Mech. Astron. 67, 224262 (2024). https://doi.org/10.1007/s11433-023-2234-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2234-6

Navigation