Skip to main content
Log in

Scanning dual-microcomb spectroscopy

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Dual-comb spectroscopy (DCS) is a powerful tool in molecular spectroscopy benefiting from the advantages of high resolution and short measurement time. The recently developed soliton microcomb (SMC) can potentially transfer the dual-comb method to an on-chip platform. In this paper, we demonstrate DCS using two frequency scanning SMCs, termed scanning dual-microcomb spectroscopy (SDMCS). The two SMCs are generated by an auxiliary-assisted thermal balance scheme, and the pump laser frequency sweeps over one free spectral range of the microresonator (∼49 GHz) using a feedback control system. The proposed SDMCS has a spectral resolution of 12.5 MHz, which is determined by the minimum sweeping step of the pump laser. Using this SDMCS system, we perform three types of gas molecule absorption spectroscopy recognition and gas concentration detection. This study paves the way for integrated DCS with a high signal-to-noise ratio, high spectral resolution, and fast acquisition rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Suh, Q. F. Yang, K. Y. Yang, X. Yi, and K. J. Vahala, Science 354, 600 (2016), arXiv: 1607.08222.

    Article  ADS  Google Scholar 

  2. T. Udem, R. Holzwarth, and T. W. Hänsch, Nature 416, 233 (2002).

    Article  ADS  Google Scholar 

  3. K. Predehl, G. Grosche, S. M. F. Raupach, S. Droste, O. Terra, J. Alnis, T. Legero, T. W. Hänsch, T. Udem, R. Holzwarth, and H. Schnatz, Science 336, 441 (2012).

    Article  ADS  Google Scholar 

  4. C. W. Chou, D. B. Hume, T. Rosenband, and D. J. Wineland, Science 329, 1630 (2010).

    Article  ADS  Google Scholar 

  5. S. Spuler, M. Linne, A. Sappey, and S. Snyder, Appl. Opt. 39, 2480 (2000).

    Article  ADS  Google Scholar 

  6. E. L. Wilson, E. M. Georgieva, and W. S. Heaps, Meas. Sci. Technol. 18, 1495 (2007).

    Article  ADS  Google Scholar 

  7. A. Schliesser, M. Brehm, F. Keilmann, and D. W. van der Weide, Opt. Express 13, 9029 (2005).

    Article  ADS  Google Scholar 

  8. K. Stefan, S. Felix, F. Michael, and K. Heinrich, Opt. Lett. 33, 209 (2008).

    Google Scholar 

  9. S. M. Link, D. J. H. C. Maas, D. Waldburger, and U. Keller, Science 356, 1164 (2017).

    Article  Google Scholar 

  10. Q. H. Song, Sci. China-Phys. Mech. Astron. 62, 074231 (2019).

    Article  Google Scholar 

  11. F. J. Shu, P. J. Zhang, Y. J. Qian, Z. Y. Wang, S. Wan, C. L. Zou, G. C. Guo, and C. H. Dong, Sci. China-Phys. Mech. Astron. 63, 254211 (2020).

    Article  ADS  Google Scholar 

  12. L. K. Chen, and Y. F. Xiao, Sci. China-Phys. Mech. Astron. 63, 224231 (2020).

    Article  ADS  Google Scholar 

  13. P. Marin-Palomo, J. N. Kemal, M. Karpov, A. Kordts, J. Pfeifle, M. H. P. Pfeiffer, P. Trocha, S. Wolf, V. Brasch, M. H. Anderson, R. Rosenberger, K. Vijayan, W. Freude, T. J. Kippenberg, and C. Koos, Nature 546, 274 (2017), arXiv: 1610.01484.

    Article  ADS  Google Scholar 

  14. Y. Geng, X. Huang, W. Cui, Y. Ling, B. Xu, J. Zhang, X. Yi, B. Wu, S. W. Huang, K. Qiu, C. W. Wong, and H. Zhou, Opt. Lett. 43, 2406 (2018), arXiv: 1805.05435.

    Article  ADS  Google Scholar 

  15. D. T. Spencer, T. Drake, T. C. Briles, J. Stone, L. C. Sinclair, C. Fredrick, Q. Li, D. Westly, B. R. Ilic, A. Bluestone, N. Volet, T. Komljenovic, L. Chang, S. H. Lee, D. Y. Oh, M. G. Suh, K. Y. Yang, M. H. P. Pfeiffer, T. J. Kippenberg, E. Norberg, L. Theogarajan, K. Vahala, N. R. Newbury, K. Srinivasan, J. E. Bowers, S. A. Diddams, and S. B. Papp, Nature 557, 81 (2018).

    Article  ADS  Google Scholar 

  16. F. X. Wang, W. Wang, R. Niu, X. Wang, C. L. Zou, C. H. Dong, B. E. Little, S. T. Chu, H. Liu, P. Hao, S. Liu, S. Wang, Z. Q. Yin, D. Y. He, W. Zhang, W. Zhao, Z. F. Han, G. C. Guo, and W. Chen, Laser Photon. Rev. 14, 1900190 (2020), arXiv: 1812.11415.

    Article  ADS  Google Scholar 

  17. M. G. Suh, and K. J. Vahala, Science 359, 884 (2018), arXiv: 1705.06697.

    Article  ADS  Google Scholar 

  18. P. Trocha, M. Karpov, D. Ganin, M. H. P. Pfeiffer, A. Kordts, S. Wolf, J. Krockenberger, P. Marin-Palomo, C. Weimann, S. Randel, W. Freude, T. J. Kippenberg, and C. Koos, Science 359, 887 (2018), arXiv: 1707.05969.

    Article  ADS  Google Scholar 

  19. J. Wang, Z. Lu, W. Wang, F. Zhang, J. Chen, Y. Wang, J. Zheng, S. T. Chu, W. Zhao, B. E. Little, X. Qu, and W. Zhang, Photon. Res. 8, 1964 (2020).

    Article  Google Scholar 

  20. L. Jia, Y. Wang, X. Wang, F. Zhang, W. Wang, J. Wang, J. Zheng, J. Chen, M. Song, X. Ma, M. Yuan, B. Little, S. T. Chu, D. Cheng, X. Qu, W. Zhao, and W. Zhang, Opt. Lett. 46, 1025 (2021).

    Article  ADS  Google Scholar 

  21. J. Zheng, Y. Wang, X. Wang, F. Zhang, W. Wang, X. Ma, J. Wang, J. Chen, L. Jia, M. Song, M. Yuan, B. Little, S. T. Chu, D. Cheng, X. Qu, W. Zhao, and W. Zhang, Appl. Phys. Lett. 118, 261106 (2021).

    Article  ADS  Google Scholar 

  22. I. Coddington, N. Newbury, and W. Swann, Optica 3, 414 (2016).

    Article  ADS  Google Scholar 

  23. M. Yu, Y. Okawachi, A. G. Griffith, N. Picqué, M. Lipson, and A. L. Gaeta, Nat. Commun. 9, 1869 (2018).

    Article  ADS  Google Scholar 

  24. T. Lin, A. Dutt, C. Joshi, X. C. Ji, C. T. Phare, Y. Okawachi, A. L. Gaeta, and M. Lipson, arXiv: 2001.00869.

  25. R. Niu, S. Wan, J. Li, R. C. Zhao, C. L. Zou, G. C. Guo, and C. H. Dong, IEEE Photon. J. 13, 1 (2021).

    Google Scholar 

  26. N. Kuse, T. Tetsumoto, G. Navickaite, M. Geiselmann, and M. E. Fermann, Opt. Lett. 45, 927 (2020), arXiv: 1908.07044.

    Article  ADS  Google Scholar 

  27. N. Kuse, G. Navickaite, M. Geiselmann, T. Yasui, and K. Minoshima, Opt. Lett. 46, 3400 (2021), arXiv: 2106.15874.

    Article  ADS  Google Scholar 

  28. Z. Lu, H. J. Chen, W. Wang, L. Yao, Y. Wang, Y. Yu, B. E. Little, S. T. Chu, Q. Gong, W. Zhao, X. Yi, Y. F. Xiao, and W. Zhang, Nat. Commun. 12, 3179 (2021).

    Article  ADS  Google Scholar 

  29. W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, and W. Zhao, Opt. Lett. 43, 2002 (2018).

    Article  ADS  Google Scholar 

  30. X. Wang, P. Xie, W. Wang, Y. Wang, Z. Lu, L. Wang, S. T. Chu, B. E. Little, W. Zhao, and W. Zhang, Photon. Res. 9, 66 (2021).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Key R&D Program of China (Grant No. 2021YFB2800600), and National Natural Science Foundation of China (Grant No. 62075238).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiqiang Wang or Wenfu Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wang, Z., Wang, X. et al. Scanning dual-microcomb spectroscopy. Sci. China Phys. Mech. Astron. 65, 294211 (2022). https://doi.org/10.1007/s11433-022-1920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-022-1920-6

PACS number(s)

Navigation