Skip to main content
Log in

Vector meson effects on multi-Skyrmion states from the rational map ansatz

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The roles of the lightest vector mesons ρ and ω in the multi-Skyrmion states are studied using the hidden local symmetry approach up to the next-to-leading order, including the homogeneous Wess-Zumino terms. The low-energy constants in the effective field theory are determined using the Sakai-Sugimoto model and the flat-space five-dimensional Yang-Mills action. With only two inputs, mρ and fπ, it is possible to determine all low-energy constants without ambiguity. The vector meson effects can be investigated by sequentially integrating vector mesons, and their geometry can be elucidated by comparing the results using the low-energy constants estimated from the Sakai-Sugimoto model and the flat-space five-dimensional Yang-Mills action. We found that the ρ meson reduces the masses of the multi-Skyrmion states and increases the overlaps of their constituents, whereas the ω meson repulses the constituents of the multi-Skyrmion states and increases their masses. Therefore, these vector mesons are crucial in the Skyrme model approach to nuclei. We also found that the warping factor, an essential element in the holographic model of QCD, affects the properties of the multi-Skyrmion states and cannot be ignored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. R. Skyrme, Proc. Roy. Soc. Lond. A 260, 127 (1961).

    Article  ADS  MathSciNet  Google Scholar 

  2. T. H. R. Skyrme, Nucl. Phys. 31, 556 (1962).

    Article  MathSciNet  Google Scholar 

  3. M. Rho, and I. Zahed, The Multifaceted Skyrmions, 2nd ed. (World Scientific, Singapore, 2016).

    Book  Google Scholar 

  4. I. Zahed, and G. E. Brown, Phys. Rep. 142, 1 (1986).

    Article  ADS  MathSciNet  Google Scholar 

  5. Y. L. Ma, and M. Rho, Sci. China-Phys. Mech. Astron. 60, 032001 (2017).

    Article  ADS  Google Scholar 

  6. Y. L. Ma, and M. Rho, Prog. Particle Nucl. Phys. 113, 103791 (2020).

    Article  Google Scholar 

  7. N. S. Manton, Skyrmions: A Theory of Nuclei (World Scientific, Singapore, 2022).

    Book  Google Scholar 

  8. E. Witten, Nucl. Phys. B 160, 57 (1979).

    Article  ADS  Google Scholar 

  9. E. Witten, Nucl. Phys. B 223, 433 (1983).

    Article  ADS  Google Scholar 

  10. E. Witten, Nucl. Phys. B 223, 422 (1983).

  11. I. Zahed, U. G. Meissner, and U. B. Kaulfuss, Nucl. Phys. A 426, 525 (1984).

    Article  ADS  Google Scholar 

  12. U. G. Meissner, N. Kaiser, A. Wirzba, and W. Weise, Phys. Rev. Lett. 57, 1676 (1986).

    Article  ADS  Google Scholar 

  13. Y. Igarashi, M. Hohmura, A. Kobayashi, H. Otsu, T. Sato, and S. Sawada, Nucl. Phys. B 259, 721 (1985).

    Article  ADS  Google Scholar 

  14. A. Drago, and V. Mantovani Sarti, Phys. Rev. C 86, 015211 (2012).

    Article  ADS  Google Scholar 

  15. M. Abu-Shady, and M. Rashdan, Phys. Rev. C 81, 015203 (2010).

    Article  ADS  Google Scholar 

  16. D. Parganlija, F. Giacosa, and D. H. Rischke, Phys. Rev. D 82, 054024 (2010).

    Article  ADS  Google Scholar 

  17. U. G. Meissner, Phys. Rep. 161, 213 (1988).

    Article  ADS  Google Scholar 

  18. K. Nawa, H. Suganuma, and T. Kojo, Phys. Rev. D 75, 086003 (2007).

    Article  ADS  Google Scholar 

  19. Y. L. Ma, Y. Oh, G. S. Yang, M. Harada, H. K. Lee, B. Y. Park, and M. Rho, Phys. Rev. D 86, 074025 (2012).

    Article  ADS  Google Scholar 

  20. Y. L. Ma, G. S. Yang, Y. Oh, and M. Harada, Phys. Rev. D 87, 034023 (2013).

    Article  ADS  Google Scholar 

  21. T. Sakai, and S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005).

    Article  ADS  Google Scholar 

  22. T. Sakai, and S. Sugimoto, Prog. Theor. Phys. 114, 1083 (2005).

    Article  ADS  Google Scholar 

  23. M. Bando, T. Kugo, S. Uehara, K. Yamawaki, and T. Yanagida, Phys. Rev. Lett. 54, 1215 (1985).

    Article  ADS  Google Scholar 

  24. M. Bando, T. Kugo, and K. Yamawaki, Phys. Rep. 164, 217 (1988).

    Article  ADS  MathSciNet  Google Scholar 

  25. M. Harada, and K. Yamawaki, Phys. Rep. 381, 1 (2003).

    Article  ADS  Google Scholar 

  26. P. Sutcliffe, J. High Energ. Phys. 2010(8), 019 (2010).

    Article  Google Scholar 

  27. P. Sutcliffe, J. High Energ. Phys. 2011(4), 045 (2011).

    Article  Google Scholar 

  28. R. A. Battye, and P. M. Sutcliffe, Phys. Lett. B 391, 150 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  29. S. B. Gudnason, and C. Halcrow, Phys. Rev. D 97, 125004 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  30. C. J. Houghton, N. S. Manton, and P. M. Sutcliffe, Nucl. Phys. B 510, 507 (1998).

    Article  ADS  Google Scholar 

  31. S. Krusch, Ann. Phys. 304, 103 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  32. S. B. Gudnason, Phys. Rev. D 98, 096018 (2018).

    Article  ADS  MathSciNet  Google Scholar 

  33. H. Weigel, B. Schwesinger, and G. Holzwarth, Phys. Lett. B 168, 321 (1986).

    Article  ADS  Google Scholar 

  34. R. Battye, N. S. Manton, and P. Sutcliffe, Proc. Roy. Soc. Lond. A 463, 261 (2007).

    ADS  Google Scholar 

  35. S. Nelmes, and B. M. A. G. Piette, Phys. Rev. D 84, 085017 (2011).

    Article  ADS  Google Scholar 

  36. B. Y. Park, W. G. Paeng, and V. Vento, Nucl. Phys. A 989, 231 (2019).

    Article  ADS  Google Scholar 

  37. R. A. Battye, and P. M. Sutcliffe, Phys. Rev. Lett. 79, 363 (1997).

    Article  ADS  Google Scholar 

  38. R. A. Battye, and P. M. Sutcliffe, Nucl. Phys. B 705, 384 (2005).

    Article  ADS  Google Scholar 

  39. C. Naya, and P. Sutcliffe, J. High Energ. Phys. 2018(05), 174 (2018).

    Article  Google Scholar 

  40. C. Naya, and P. Sutcliffe, Phys. Rev. Lett. 121, 232002 (2018).

    Article  ADS  Google Scholar 

  41. U. G. Meissner, N. Kaiser, and W. Weise, Nucl. Phys. A 466, 685 (1987).

    Article  ADS  Google Scholar 

  42. H. Imai, A. Kobayashi, H. Otsu, and S. Sawada, Prog. Theor. Phys. 82, 141 (1989).

    Article  ADS  Google Scholar 

  43. P. Sutcliffe, Phys. Rev. D 79, 085014 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  44. E. Bueler, PETSc for Partial Differential Equations: Numerical Solutions in C and Python (Society for Industrial and Applied Mathematics, Philadelphia, 2020).

    Book  Google Scholar 

  45. Y. L. Ma, M. Harada, H. K. Lee, Y. Oh, B. Y. Park, and M. Rho, Phys. Rev. D 88, 014016 (2013) [Erratum: Phys. Rev. D 88, 079904 (2013)].

    Article  ADS  Google Scholar 

  46. L. X. Cui, Z. Fang, and Y. L. Wu, Eur. Phys. J. C 76, 22 (2016).

    Article  ADS  Google Scholar 

  47. Z. Fang, Y. L. Wu, and L. Zhang, Phys. Rev. D 100, 054008 (2019).

    Article  ADS  Google Scholar 

  48. M. Harada, Y. L. Ma, and S. Matsuzaki, Phys. Rev. D 89, 115012 (2014).

    Article  ADS  Google Scholar 

  49. C. Adam, C. Naya, J. Sanchez-Guillen, and A. Wereszczynski, Phys. Rev. Lett. 111, 232501 (2013).

    Article  ADS  Google Scholar 

  50. L. A. Ferreira, and L. R. Livramento, J. Phys. G-Nucl. Part. Phys. 49, 115102 (2022).

    Article  ADS  Google Scholar 

  51. B. Y. Park, M. Rho, and V. Vento, Nucl. Phys. A 736, 129 (2004).

    Article  ADS  Google Scholar 

  52. G. Barriga, F. Canfora, M. Lagos, M. Torres, and A. Vera, Nucl. Phys. B 983, 115913 (2022).

    Article  Google Scholar 

  53. J. Cork, and C. Halcrow, Nonlinearity 35, 3944 (2022).

    Article  ADS  MathSciNet  Google Scholar 

  54. M. F. Atiyah, N. J. Hitchin, V. G. Drinfeld, and Y. I. Manin, Phys. Lett. A 65, 185 (1978).

    Article  ADS  MathSciNet  Google Scholar 

  55. R. A. Battye, and P. M. Sutcliffe, Phys. Rev. C 73, 055205 (2006).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-Liang Ma.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

Yong-Liang Ma was supported by the National Natural Science Foundation of China (Grant Nos. 11875147, and 12147103). We would like to thank Yu Tian and Hong-Bao Zhang for their valuable discussions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, JS., Ma, YL. Vector meson effects on multi-Skyrmion states from the rational map ansatz. Sci. China Phys. Mech. Astron. 66, 112011 (2023). https://doi.org/10.1007/s11433-023-2220-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2220-y

Keywords

Navigation