Skip to main content
Log in

Skyrmions, instantons and holography

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Some time ago, Atiyah and Manton observed that computing the holonomy of Yang-Mills instantons yields good approximations to static Skyrmion solutions of the Skyrme model. This paper provides an extension and explanation of this result, by proving that instanton holonomies produce exact solutions of a BPS Skyrme model, in which the Skyrme field is coupled to a tower of vector mesons. Neglecting any (or indeed all) of the vector mesons breaks the scale invariance and removes the BPS property of the Skyrmions. However, it is shown that a truncation of the BPS Skyrme theory, in which only the first vector meson is included, already moves the Skyrme model significantly closer to the BPS system. A theory that is close to a BPS system is required to reproduce the experimental data on binding energies of nuclei. A zero-mode quantization of the Skyrmion is performed in the truncated BPS theory and the results are compared to the physical properties of the nucleon. The approach is an analogue in five-dimensional Minkowski spacetime of a recent holographic construction of a Skyrme model by Sakai and Sugimoto, based on a string theory derivation of a Yang-Mills-Chern-Simons theory in a curved five-dimensional spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T.H.R. Skyrme, A unified field theory of mesons and baryons, Nucl. Phys. 31 (1962) 556 [SPIRES].

    Article  MathSciNet  Google Scholar 

  2. N.S. Manton and P.M. Sutcliffe, Topological solitons, Cambridge University Press, Cambridge U.K. (2004) [SPIRES].

    Book  Google Scholar 

  3. M.F. Atiyah and N.S. Manton, Skyrmions from instantons, Phys. Lett. B 222 (1989) 438 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. M.F. Atiyah and N.S. Manton, Geometry and kinematics of two skyrmions, Commun. Math. Phys. 153 (1993) 391 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. G.S. Adkins, ρ mesons in the Skyrme model, Phys. Rev. D 33 (1986) 193 [SPIRES].

    ADS  Google Scholar 

  6. U.G. Meissner and I. Zahed, Skyrmions in the presence of vector mesons, Phys. Rev. Lett. 56 (1986) 1035 [SPIRES].

    Article  ADS  Google Scholar 

  7. M. Bando, T. Kugo, S. Uehara, K. Yamawaki and T. Yanagida, Is ρ meson a dynamical gauge boson of hidden local symmetry?, Phys. Rev. Lett. 54 (1985) 1215 [SPIRES].

    Article  ADS  Google Scholar 

  8. M. Bando, T. Kugo and K. Yamawaki, Nonlinear realization and hidden local symmetries, Phys. Rept. 164 (1988) 217 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  9. M. Harada and K. Yamawaki, Hidden local symmetry at loop: a new perspective of composite gauge boson and chiral phase transition, Phys. Rept. 381 (2003) 1 [hep-ph/0302103] [SPIRES].

    Article  ADS  Google Scholar 

  10. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [SPIRES].

    Article  ADS  Google Scholar 

  11. K. Nawa, H. Suganuma and T. Kojo, Baryons in holographic QCD, Phys. Rev. D 75 (2007) 086003 [hep-th/0612187] [SPIRES].

    ADS  Google Scholar 

  12. H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic QCD, Prog. Theor. Phys. 117 (2007) 1157 [hep-th/0701280] [SPIRES].

    Article  ADS  Google Scholar 

  13. D.K. Hong, M. Rho, H.-U. Yee and P. Yi, Chiral dynamics of baryons from string theory, Phys. Rev. D 76 (2007) 061901 [hep-th/0701276] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  14. E. Witten, Global aspects of current algebra, Nucl. Phys. B 223 (1983) 422 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. E. Witten, Current algebra, baryons and quark confinement, Nucl. Phys. B 223 (1983) 433 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  16. L.D. Faddeev, Some comments on the many dimensional solitons, Lett. Math. Phys. 1 (1976) 289 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  17. R.A. Battye and P.M. Sutcliffe, Solitonic fullerenes, Phys. Rev. Lett. 86 (2001) 3989 [hep-th/0012215] [SPIRES].

    Article  ADS  Google Scholar 

  18. R.A. Battye and P.M. Sutcliffe, Skyrmions, fullerenes and rational maps, Rev. Math. Phys. 14 (2002) 29 [hep-th/0103026] [SPIRES].

    Article  MathSciNet  Google Scholar 

  19. R.A. Battye and P.M. Sutcliffe, A Skyrme lattice with hexagonal symmetry, Phys. Lett. B 416 (1998) 385 [hep-th/9709221] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  20. C.J. Houghton, N.S. Manton and P.M. Sutcliffe, Rational maps, monopoles and skyrmions, Nucl. Phys. B 510 (1998) 507 [hep-th/9705151] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  21. R.A. Leese and N.S. Manton, Stable instanton generated Skyrme fields with baryon numbers three and four, Nucl. Phys. A 572 (1994) 575 [SPIRES].

    ADS  Google Scholar 

  22. M.A. Singer and P.M. Sutcliffe, Symmetric instantons and Skyrme fields, Nonlinearity 12 (1999) 987 [hep-th/9901075] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  23. P. Sutcliffe, Instantons and the buckyball, Proc. Roy. Soc. Lond. A 460 (2004) 2903 [hep-th/0309157] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  24. N.S. Manton and P.M. Sutcliffe, Skyrme crystal from a twisted instanton on a four torus, Phys. Lett. B 342 (1995) 196 [hep-th/9409182] [SPIRES].

    ADS  Google Scholar 

  25. C.T. Hill, Topological solitons from deconstructed extra dimensions, Phys. Rev. Lett. 88 (2002) 041601 [hep-th/0109068] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  26. D.T. Son and M.A. Stephanov, QCD and dimensional deconstruction, Phys. Rev. D 69 (2004) 065020 [hep-ph/0304182] [SPIRES].

    ADS  Google Scholar 

  27. A. Pomarol and A. Wulzer, Stable skyrmions from extra dimensions, JHEP 03 (2008) 051 [arXiv:0712.3276] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. M. Eto, M. Nitta, K. Ohashi and D. Tong, Skyrmions from instantons inside domain walls, Phys. Rev. Lett. 95 (2005) 252003 [hep-th/0508130] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  29. J.P. Boyd, Chebyshev and Fourier spectral methods, Springer-Verlag, Germany (1989).

    Google Scholar 

  30. G.S. Adkins, C.R. Nappi and E. Witten, Static properties of nucleons in the Skyrme model, Nucl. Phys. B 228 (1983) 552 [SPIRES].

    Article  ADS  Google Scholar 

  31. G.S. Adkins and C.R. Nappi, The Skyrme model with pion masses, Nucl. Phys. B 233 (1984) 109 [SPIRES].

    Article  ADS  Google Scholar 

  32. V.B. Kopeliovich, A.M. Shunderuk and G.K. Matushko, Mass splittings of nuclear isotopes in chiral soliton approach, Phys. Atom. Nucl. 69 (2006) 120 [Yad. Fiz. 69 (2006) 124] [nucl-th/0404020] [SPIRES].

    Article  ADS  Google Scholar 

  33. N.S. Manton and S.W. Wood, Reparametrising the Skyrme model using the lithium-6 nucleus, Phys. Rev. D 74 (2006) 125017 [hep-th/0609185] [SPIRES].

    ADS  Google Scholar 

  34. R.A. Battye, N.S. Manton, P.M. Sutcliffe and S.W. Wood, Light nuclei of even mass number in the Skyrme model, Phys. Rev. C 80 (2009) 034323 [arXiv:0905.0099] [SPIRES].

    ADS  Google Scholar 

  35. R.A. Battye, S. Krusch and P.M. Sutcliffe, Spinning skyrmions and the Skyrme parameters, Phys. Lett. B 626 (2005) 120 [hep-th/0507279] [SPIRES].

    ADS  Google Scholar 

  36. N. Horigome and Y. Tanii, Holographic chiral phase transition with chemical potential, JHEP 01 (2007) 072 [hep-th/0608198] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  37. O. Bergman, G. Lifschytz and M. Lippert, Holographic nuclear physics, JHEP 11 (2007) 056 [arXiv:0708.0326] [SPIRES].

    Article  ADS  Google Scholar 

  38. K.-Y. Kim, S.-J. Sin and I. Zahed, The chiral model of Sakai-Sugimoto at finite baryon density, JHEP 01 (2008) 002 [arXiv:0708.1469] [SPIRES].

    Article  ADS  Google Scholar 

  39. M. Rozali, H.-H. Shieh, M. Van Raamsdonk and J. Wu, Cold nuclear matter in holographic QCD, JHEP 01 (2008) 053 [arXiv:0708.1322] [SPIRES].

    Article  ADS  Google Scholar 

  40. O. Aharony, J. Sonnenschein and S. Yankielowicz, A holographic model of deconfinement and chiral symmetry restoration, Annals Phys. 322 (2007) 1420 [hep-th/0604161] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  41. K. Peeters, J. Sonnenschein and M. Zamaklar, Holographic melting and related properties of mesons in a quark gluon plasma, Phys. Rev. D 74 (2006) 106008 [hep-th/0606195] [SPIRES].

    ADS  Google Scholar 

  42. D.K. Hong, M. Rho, H.-U. Yee and P. Yi, Dynamics of baryons from string theory and vector dominance, JHEP 09 (2007) 063 [arXiv:0705.2632] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  43. K.-Y. Kim and I. Zahed, Electromagnetic baryon form factors from holographic QCD, JHEP 09 (2008) 007 [arXiv:0807.0033] [SPIRES].

    Article  ADS  Google Scholar 

  44. D.K. Hong, M. Rho, H.-U. Yee and P. Yi, Nucleon form factors and hidden symmetry in holographic QCD, Phys. Rev. D 77 (2008) 014030 [arXiv:0710.4615] [SPIRES].

    ADS  Google Scholar 

  45. K. Hashimoto, T. Sakai and S. Sugimoto, Holographic baryons: static properties and form factors from gauge/ string duality, Prog. Theor. Phys. 120 (2008) 1093 [arXiv:0806.3122] [SPIRES].

    Article  ADS  Google Scholar 

  46. K. Hashimoto, T. Sakai and S. Sugimoto, Nuclear force from string theory, Prog. Theor. Phys. 122 (2009) 427 [arXiv:0901.4449] [SPIRES].

    Article  ADS  Google Scholar 

  47. R. Battye and P. Sutcliffe, Skyrmions with massive pions, Phys. Rev. C 73 (2006) 055205 [hep-th/0602220] [SPIRES].

    ADS  Google Scholar 

  48. R. Battye, N.S. Manton and P. Sutcliffe, Skyrmions and the alpha-particle model of nuclei, Proc. Roy. Soc. Lond. A 463 (2007) 261 [hep-th/0605284] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  49. M. Atiyah and P. Sutcliffe, Skyrmions, instantons, mass and curvature, Phys. Lett. B 605 (2005) 106 [hep-th/0411052] [SPIRES].

    ADS  Google Scholar 

  50. C. Adam, J. Sanchez-Guillen and A. Wereszczynski, A Skyrme-type proposal for baryonic matter, Phys. Lett. B 691 (2010) 105 [arXiv:1001.4544] [SPIRES].

    ADS  Google Scholar 

  51. K. Arthur, G. Roche, D.H. Tchrakian and Y.S. Yang, Skyrme models with selfdual limits: D = 2, 3, J. Math. Phys. 37 (1996) 2569 [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Sutcliffe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sutcliffe, P. Skyrmions, instantons and holography. J. High Energ. Phys. 2010, 19 (2010). https://doi.org/10.1007/JHEP08(2010)019

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP08(2010)019

Keywords

Navigation