Skip to main content
Log in

Quantum parametric amplification of phonon-mediated magnon-spin interaction

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

The recently developed hybrid magnonics provides new opportunities for advances in both the study of magnetism and the development of quantum information processing. However, engineering coherent quantum state transfer between magnons and specific information carriers, in particular, mechanical oscillators and solid-state spins, remains challenging due to the intrinsically weak interactions and the frequency mismatch between different components. Here, we show how to strongly couple the magnon modes in a nanomagnet to the quantized mechanical motion (phonons) of a micromechanical cantilever in a hybrid tripartite system. The coherent and enhanced magnon-phonon coupling is engineered by introducing the quantum parametric amplification of the mechanical motion. With experimentally feasible parameters, we show that the mechanical parametric drive can be adjusted to drive the system into the strong-coupling regime and even the ultrastrong-coupling regime. Furthermore, we show the coherent state transfer between the nanomagnet and a nitrogen-vacancy center in the dispersive-coupling regime, with the magnon-spin interaction mediated by the virtually-excited squeezed phonons. The amplified mechanical noise can hardly interrupt the coherent dynamics of the system even for low mechanical quality factors, which removes the requirement of applying additional engineered-reservoir techniques. Our work opens up prospects for developing novel quantum transducers, quantum memories and high-precision measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Y. Yuan, Y. Cao, A. Kamra, R. A. Duine, and P. Yan, Phys. Rep. 965, 1 (2022), arXiv: 2111.14241.

    Article  MathSciNet  ADS  Google Scholar 

  2. B. Zare Rameshti, S. Viola Kusminskiy, J. A. Haigh, K. Usami, D. Lachance-Quirion, Y. Nakamura, C. M. Hu, H. X. Tang, G. E. W. Bauer, and Y. M. Blanter, Phys. Rep. 979, 1 (2022), arXiv: 2106.09312.

    Article  MathSciNet  ADS  Google Scholar 

  3. A. Barman, G. Gubbiotti, S. Ladak, A. O. Adeyeye, M. Krawczyk, J. Gräfe, C. Adelmann, S. Cotofana, A. Naeemi, V. I. Vasyuchka, B. Hillebrands, S. A. Nikitov, H. Yu, D. Grundler, A. V. Sadovnikov, A. A. Grachev, S. E. Sheshukova, J. Y. Duquesne, M. Marangolo, G. Csaba, W. Porod, V. E. Demidov, S. Urazhdin, S. O. Demokritov, E. Albisetti, D. Petti, R. Bertacco, H. Schultheiss, V. V. Kruglyak, V. D. Poimanov, S. Sahoo, J. Sinha, H. Yang, M. Münzenberg, T. Moriyama, S. Mizukami, P. Landeros, R. A. Gallardo, G. Carlotti, J. V. Kim, R. L. Stamps, R. E. Camley, B. Rana, Y. Otani, W. Yu, T. Yu, G. E. W. Bauer, C. Back, G. S. Uhrig, O. V. Dobrovolskiy, B. Budinska, H. Qin, S. van Dijken, A. V. Chumak, A. Khitun, D. E. Nikonov, I. A. Young, B. W. Zingsem, and M. Winklhofer, J. Phys.-Condens. Matter 33, 413001 (2021).

    Article  Google Scholar 

  4. Y. Li, W. Zhang, V. Tyberkevych, W. K. Kwok, A. Hoffmann, and V. Novosad, J. Appl. Phys. 128, 130902 (2020), arXiv: 2006.16158.

    Article  ADS  Google Scholar 

  5. A. Kamra, W. Belzig, and A. Brataas, Appl. Phys. Lett. 117, 090501 (2020), arXiv: 2008.13536.

    Article  ADS  Google Scholar 

  6. M. Harder, B. M. Yao, Y. S. Gui, and C. M. Hu, J. Appl. Phys. 129, 201101 (2021), arXiv: 2105.10491.

    Article  ADS  Google Scholar 

  7. D. Lachance-Quirion, Y. Tabuchi, A. Gloppe, K. Usami, and Y. Nakamura, Appl. Phys. Express 12, 070101 (2019), arXiv: 1902.03024.

    Article  ADS  Google Scholar 

  8. H. Huebl, C. W. Zollitsch, J. Lotze, F. Hocke, M. Greifenstein, A. Marx, R. Gross, and S. T. B. Goennenwein, Phys. Rev. Lett. 111, 127003 (2013), arXiv: 1207.6039.

    Article  ADS  Google Scholar 

  9. Y. Tabuchi, S. Ishino, T. Ishikawa, R. Yamazaki, K. Usami, and Y. Nakamura, Phys. Rev. Lett. 113, 083603 (2014), arXiv: 1405.1913.

    Article  ADS  Google Scholar 

  10. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Phys. Rev. Lett. 113, 156401 (2014), arXiv: 1405.7062.

    Article  ADS  Google Scholar 

  11. A. Osada, R. Hisatomi, A. Noguchi, Y. Tabuchi, R. Yamazaki, K. Usami, M. Sadgrove, R. Yalla, M. Nomura, and Y. Nakamura, Phys. Rev. Lett. 116, 223601 (2016), arXiv: 1510.01837.

    Article  ADS  Google Scholar 

  12. X. Zhang, N. Zhu, C. L. Zou, and H. X. Tang, Phys. Rev. Lett. 117, 123605 (2016), arXiv: 1510.03545.

    Article  ADS  Google Scholar 

  13. Y. Li, T. Polakovic, Y. L. Wang, J. Xu, S. Lendinez, Z. Zhang, J. Ding, T. Khaire, H. Saglam, R. Divan, J. Pearson, W. K. Kwok, Z. Xiao, V. Novosad, A. Hoffmann, and W. Zhang, Phys. Rev. Lett. 123, 107701 (2019), arXiv: 1902.09715.

    Article  ADS  Google Scholar 

  14. J. T. Hou, and L. Liu, Phys. Rev. Lett. 123, 107702 (2019), arXiv: 1903.01887.

    Article  ADS  Google Scholar 

  15. J. Xu, C. Zhong, X. Han, D. Jin, L. Jiang, and X. Zhang, Phys. Rev. Lett. 125, 237201 (2020), arXiv: 2010.14727.

    Article  ADS  Google Scholar 

  16. H. Y. Yuan, P. Yan, S. Zheng, Q. Y. He, K. Xia, and M. H. Yung, Phys. Rev. Lett. 124, 053602 (2020), arXiv: 1905.11117.

    Article  ADS  Google Scholar 

  17. Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, K. Us-ami, and Y. Nakamura, Science 349, 405 (2015), arXiv: 1410.3781.

    Article  MathSciNet  ADS  Google Scholar 

  18. D. Lachance-Quirion, Y. Tabuchi, S. Ishino, A. Noguchi, T. Ishikawa, R. Yamazaki, and Y. Nakamura, Sci. Adv. 3, e1603150 (2017).

    Article  ADS  Google Scholar 

  19. D. Lachance-Quirion, S. P. Wolski, Y. Tabuchi, S. Kono, K. Usami, and Y. Nakamura, Science 367, 425 (2020), arXiv: 1910.09096.

    Article  ADS  Google Scholar 

  20. X. Zhang, C. L. Zou, L. Jiang, and H. X. Tang, Sci. Adv. 2, e1501286 (2016), arXiv: 1511.03680.

    Article  ADS  Google Scholar 

  21. J. Li, S. Y. Zhu, and G. S. Agarwal, Phys. Rev. Lett. 121, 203601 (2018), arXiv: 1807.07158.

    Article  ADS  Google Scholar 

  22. M. Yu, H. Shen, and J. Li, Phys. Rev. Lett. 124, 213604 (2020), arXiv: 1909.05936.

    Article  ADS  Google Scholar 

  23. Z. Shen, G. T. Xu, M. Zhang, Y. L. Zhang, Y. Wang, C. Z. Chai, C. L. Zou, G. C. Guo, and C. H. Dong, Phys. Rev. Lett. 129, 243601 (2022).

    Article  ADS  Google Scholar 

  24. G. Kurizki, P. Bertet, Y. Kubo, K. Mølmer, D. Petrosyan, P. Rabl, and J. Schmiedmayer, Proc. Natl. Acad. Sci. 112, 3866 (2015), arXiv: 1504.00158.

    Article  ADS  Google Scholar 

  25. R. Hisatomi, A. Osada, Y. Tabuchi, T. Ishikawa, A. Noguchi, R. Yamazaki, K. Usami, and Y. Nakamura, Phys. Rev. B 93, 174427 (2016), arXiv: 1601.03908.

    Article  ADS  Google Scholar 

  26. N. Zhu, X. Zhang, X. Han, C. L. Zou, C. Zhong, C. H. Wang, L. Jiang, and H. X. Tang, Optica 7, 1291 (2020), arXiv: 2005.06429.

    Article  ADS  Google Scholar 

  27. C. Z. Chai, Z. Shen, Y. L. Zhang, H. Q. Zhao, G. C. Guo, C. L. Zou, and C. H. Dong, Photon. Res. 10, 820 (2022).

    Article  Google Scholar 

  28. Y. Cao, and P. Yan, Phys. Rev. B 99, 214415 (2019), arXiv: 1901.10685.

    Article  ADS  Google Scholar 

  29. M. F. Colombano, G. Arregui, F. Bonell, N. E. Capuj, E. Chavez-Angel, A. Pitanti, S. O. Valenzuela, C. M. Sotomayor-Torres, D. Navarro-Urrios, and M. V. Costache, Phys. Rev. Lett. 125, 147201 (2020), arXiv: 1909.03924.

    Article  ADS  Google Scholar 

  30. S. P. Wolski, D. Lachance-Quirion, Y. Tabuchi, S. Kono, A. Noguchi, K. Usami, and Y. Nakamura, Phys. Rev. Lett. 125, 117701 (2020).

    Article  ADS  Google Scholar 

  31. N. Crescini, C. Braggio, G. Carugno, A. Ortolan, and G. Ruoso, Appl. Phys. Lett. 117, 144001 (2020), arXiv: 2008.03062.

    Article  ADS  Google Scholar 

  32. T. X. Lu, H. Zhang, Q. Zhang, and H. Jing, Phys. Rev. A 103, 063708 (2021).

    Article  ADS  Google Scholar 

  33. C. Gonzalez-Ballestero, J. Gieseler, and O. Romero-Isart, Phys. Rev. Lett. 124, 093602 (2020), arXiv: 1907.04039.

    Article  MathSciNet  ADS  Google Scholar 

  34. C. Gonzalez-Ballestero, D. Hümmer, J. Gieseler, and O. Romero-Isart, Phys. Rev. B 101, 125404 (2020), arXiv: 1912.08745.

    Article  ADS  Google Scholar 

  35. J. Holanda, D. S. Maior, A. Azevedo, and S. M. Rezende, Nat. Phys. 14, 500 (2018).

    Article  Google Scholar 

  36. D. A. Bozhko, V. I. Vasyuchka, A. V. Chumak, and A. A. Serga, Low Temp. Phys. 46, 383 (2020), arXiv: 2001.11447.

    Article  ADS  Google Scholar 

  37. T. Neuman, D. S. Wang, and P. Narang, Phys. Rev. Lett. 125, 247702 (2020), arXiv: 2007.11595.

    Article  ADS  Google Scholar 

  38. D. S. Wang, T. Neuman, and P. Narang, J. Phys. Chem. C 125, 6222 (2021).

    Article  Google Scholar 

  39. I. C. Skogvoll, J. Lidal, J. Danon, and A. Kamra, Phys. Rev. Appl. 16, 064008 (2021), arXiv: 2105.07430.

    Article  ADS  Google Scholar 

  40. M. Fukami, D. R. Candido, D. D. Awschalom, and M. E. Flatté, PRX Quantum 2, 040314 (2021), arXiv: 2101.09220.

    Article  ADS  Google Scholar 

  41. W. Xiong, M. Tian, G. Q. Zhang, and J. Q. You, Phys. Rev. B 105, 245310 (2022), arXiv: 2112.00452.

    Article  ADS  Google Scholar 

  42. X. Y. Lu, Y. Wu, J. R. Johansson, H. Jing, J. Zhang, and F. Nori, Phys. Rev. Lett. 114, 093602 (2015), arXiv: 1412.2864.

    Article  ADS  Google Scholar 

  43. W. Qin, V. Macrí, A. Miranowicz, S. Savasta, and F. Nori, Phys. Rev. A 100, 062501 (2019), arXiv: 1902.04216.

    Article  ADS  Google Scholar 

  44. W. Qin, A. Miranowicz, P. B. Li, X. Y. Lu, J. Q. You, and F. Nori, Phys. Rev. Lett. 120, 093601 (2018), arXiv: 1709.09555.

    Article  ADS  Google Scholar 

  45. C. Leroux, L. C. G. Govia, and A. A. Clerk, Phys. Rev. Lett. 120, 093602 (2018), arXiv: 1709.09091.

    Article  ADS  Google Scholar 

  46. Y. H. Chen, W. Qin, X. Wang, A. Miranowicz, and F. Nori, Phys. Rev. Lett. 126, 023602 (2021), arXiv: 2008.04078.

    Article  ADS  Google Scholar 

  47. L. Tang, J. Tang, M. Chen, F. Nori, M. Xiao, and K. Xia, Phys. Rev. Lett. 128, 083604 (2022), arXiv: 2110.05016.

    Article  ADS  Google Scholar 

  48. P. B. Li, Y. Zhou, W. B. Gao, and F. Nori, Phys. Rev. Lett. 125, 153602 (2020), arXiv: 2003.07151.

    Article  ADS  Google Scholar 

  49. Y. Wang, J. L. Wu, J. X. Han, Y. Xia, Y. Y. Jiang, and J. Song, Phys. Rev. Appl. 17, 024009 (2022), arXiv: 2112.08562.

    Article  ADS  Google Scholar 

  50. J.-X. Liu, Y.-F. Jiao, Y. Li, X.-W. Xu, Q.-Y. He, and H. Jing, Sci. China-Phys. Mech. Astron. 66, 230312 (2023)

    Article  ADS  Google Scholar 

  51. M. A. Lemonde, N. Didier, and A. A. Clerk, Nat. Commun. 7, 11338 (2016), arXiv: 1509.09238.

    Article  ADS  Google Scholar 

  52. W. Zhao, S. D. Zhang, A. Miranowicz, and H. Jing, Sci. China-Phys. Mech. Astron. 63, 224211 (2020), arXiv: 1905.12493.

    Article  ADS  Google Scholar 

  53. Y.-H. Chen, W. Qin, and F. Nori, Phys. Rev. A 100, 012339 (2019).

    Article  ADS  Google Scholar 

  54. Y. Wang, C. Li, E. M. Sampuli, J. Song, Y. Jiang, and Y. Xia, Phys. Rev. A 99, 023833 (2019), arXiv: 1902.05751.

    Article  ADS  Google Scholar 

  55. C. J. Zhu, L. L. Ping, Y. P. Yang, and G. S. Agarwal, Phys. Rev. Lett. 124, 073602 (2020), arXiv: 1907.00522.

    Article  ADS  Google Scholar 

  56. P. Groszkowski, H. K. Lau, C. Leroux, L. C. G. Govia, and A. A. Clerk, Phys. Rev. Lett. 125, 203601 (2020), arXiv: 2003.03345.

    Article  ADS  Google Scholar 

  57. Y. Wang, J. L. Wu, J. Song, Z. J. Zhang, Y. Y. Jiang, and Y. Xia, Phys. Rev. A 101, 053826 (2020).

    Article  ADS  Google Scholar 

  58. Y. Wang, J. L. Wu, J. X. Han, Y. Y. Jiang, Y. Xia, and J. Song, Phys. Rev. A 102, 032601 (2020), arXiv: 2008.05670.

    Article  ADS  Google Scholar 

  59. W. Qin, A. Miranowicz, H. Jing, and F. Nori, Phys. Rev. Lett. 127, 093602 (2021), arXiv: 2101.03662.

    Article  ADS  Google Scholar 

  60. M. Villiers, W. C. Smith, A. Petrescu, A. Borgognoni, M. Del-becq, A. Sarlette, M. Mirrahimi, P. Campagne-Ibarcq, T. Kontos, and Z. Leghtas, arXiv: 2212.04991.

  61. W. Ge, B. C. Sawyer, J. W. Britton, K. Jacobs, J. J. Bollinger, and M. Foss-Feig, Phys. Rev. Lett. 122, 030501 (2019).

    Article  ADS  Google Scholar 

  62. S. C. Burd, R. Srinivas, H. M. Knaack, W. Ge, A. C. Wilson, D. J. Wineland, D. Leibfried, J. J. Bollinger, D. T. C. Allcock, and D. H. Slichter, Nat. Phys. 17, 898 (2021), arXiv: 2009.14342.

    Article  Google Scholar 

  63. M. Affolter, W. Ge, B. Bullock, S. C. Burd, K. A. Gilmore, J. F. Lilieholm, A. L. Carter, and J. J. Bollinger, Phys. Rev. A 107, 032425 (2023), arXiv: 2301.08195.

    Article  ADS  Google Scholar 

  64. X. F. Pan, X. L. Hei, X. L. Dong, J. Q. Chen, C. P. Shen, H. Ali, and P. B. Li, Phys. Rev. A 107, 023722 (2023), arXiv: 2210.04751.

    Article  ADS  Google Scholar 

  65. X. L. Hei, P. B. Li, X. F. Pan, and F. Nori, Phys. Rev. Lett. 130, 073602 (2023), arXiv: 2301.10424.

    Article  ADS  Google Scholar 

  66. M. Asjad, J. Li, S. Y. Zhu, and J. Q. You, Fundamental Res. 3, 3 (2023).

    Article  Google Scholar 

  67. S. Sharma, V. A. S. V. Bittencourt, A. D. Karenowska, and S. V. Kusminskiy, Phys. Rev. B 103, L100403 (2021), arXiv: 2009.00128.

    Article  ADS  Google Scholar 

  68. F. X. Sun, S. S. Zheng, Y. Xiao, Q. Gong, Q. He, and K. Xia, Phys. Rev. Lett. 127, 087203 (2021), arXiv: 2108.05095.

    Article  ADS  Google Scholar 

  69. A. Vinante, G. Wijts, O. Usenko, L. Schinkelshoek, and T. H. Oosterkamp, Nat. Commun. 2, 572 (2011), arXiv: 1105.3395.

    Article  ADS  Google Scholar 

  70. J. A. J. Burgess, A. E. Fraser, F. F. Sani, D. Vick, B. D. Hauer, J. P. Davis, and M. R. Freeman, Science 339, 1051 (2013).

    Article  ADS  Google Scholar 

  71. A. Vinante, and P. Falferi, Phys. Rev. Lett. 111, 207203 (2013), arXiv: 1309.3121.

    Article  ADS  Google Scholar 

  72. A. M. J. den Haan, J. J. T. Wagenaar, J. M. de Voogd, G. Koning, and T. H. Oosterkamp, Phys. Rev. B 92, 235441 (2015), arXiv: 1509.01251.

    Article  ADS  Google Scholar 

  73. S. Kolkowitz, A. C. Bleszynski Jayich, Q. P. Unterreithmeier, S. D. Bennett, P. Rabl, J. G. E. Harris, and M. D. Lukin, Science 335, 1603 (2012).

    Article  ADS  Google Scholar 

  74. D. Rugar, and P. Gruetter, Phys. Rev. Lett. 67, 699 (1991).

    Article  ADS  Google Scholar 

  75. A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, Phys. Rev. Lett. 107, 213603 (2011), arXiv: 1107.1294.

    Article  ADS  Google Scholar 

  76. P. Rabl, P. Cappellaro, M. V. G. Dutt, L. Jiang, J. R. Maze, and M. D. Lukin, Phys. Rev. B 79, 041302 (2009), arXiv: 0806.3606.

    Article  ADS  Google Scholar 

  77. P. Rabl, S. J. Kolkowitz, F. H. L. Koppens, J. G. E. Harris, P. Zoller, and M. D. Lukin, Nat. Phys. 6, 602 (2010), arXiv: 0908.0316.

    Article  Google Scholar 

  78. L. Childress, M. V. Gurudev Dutt, J. M. Taylor, A. S. Zibrov, F. Jelezko, J. Wrachtrup, P. R. Hemmer, and M. D. Lukin, Science 314, 281 (2006).

    Article  ADS  Google Scholar 

  79. J. M. Taylor, P. Cappellaro, L. Childress, L. Jiang, D. Budker, P. R. Hemmer, A. Yacoby, R. Walsworth, and M. D. Lukin, Nat. Phys. 4, 810 (2008), arXiv: 0805.1367.

    Article  Google Scholar 

  80. L. R. Walker, Phys. Rev. 105, 390 (1957).

    Article  ADS  Google Scholar 

  81. L. R. Walker, J. Appl. Phys. 29, 318 (1958).

    Article  ADS  Google Scholar 

  82. P. Röschmann, and H. Dötsch, Phys. Stat. Sol. (B) 82, 11 (1977).

    Article  ADS  Google Scholar 

  83. D. L. Mills, J. Magn. Magn. Mater. 306, 16 (2006).

    Article  ADS  Google Scholar 

  84. C. Kittel, Phys. Rev. 73, 155 (1948).

    Article  ADS  Google Scholar 

  85. H. J. Mamin, C. T. Rettner, M. H. Sherwood, L. Gao, and D. Rugar, Appl. Phys. Lett. 100, 013102 (2012).

    Article  ADS  Google Scholar 

  86. P. B. Li, Z. L. Xiang, P. Rabl, and F. Nori, Phys. Rev. Lett. 117, 015502 (2016), arXiv: 1606.02998.

    Article  ADS  Google Scholar 

  87. C. Sánchez Muñoz, A. Lara, J. Puebla, and F. Nori, Phys. Rev. Lett. 121, 123604 (2018), arXiv: 1802.01306.

    Article  ADS  Google Scholar 

  88. Y. Zhou, C. S. Hu, D. Y. Lu, X. K. Li, H. M. Huang, Y. C. Xiong, and X. Y. Lü, Photon. Res. 10, 1640 (2022).

    Article  Google Scholar 

  89. J. Li, Y. P. Wang, W. J. Wu, S. Y. Zhu, and J. Q. You, PRX Quantum 2, 040344 (2021).

    Article  ADS  Google Scholar 

  90. R. A. Norte, J. P. Moura, and S. Gröblacher, Phys. Rev. Lett. 116, 147202 (2016), arXiv: 1511.06235.

    Article  ADS  Google Scholar 

  91. Y. Tsaturyan, A. Barg, E. S. Polzik, and A. Schliesser, Nat. Nanotech. 12, 776 (2017).

    Article  Google Scholar 

  92. A. H. Ghadimi, S. A. Fedorov, N. J. Engelsen, M. J. Bereyhi, R. Schilling, D. J. Wilson, and T. J. Kippenberg, Science 360, 764 (2018).

    Article  MathSciNet  Google Scholar 

  93. H. J. Mamin, M. Poggio, C. L. Degen, and D. Rugar, Nat. Nanotech. 2, 301 (2007), arXiv: cond-mat/0702664.

    Article  ADS  Google Scholar 

  94. M. Poggio, and C. L. Degen, Nanotechnology 21, 342001 (2010), arXiv: 1006.3736.

    Article  Google Scholar 

  95. T. Ishikawa, K. M. C. Fu, C. Santori, V. M. Acosta, R. G. Beausoleil, H. Watanabe, S. Shikata, and K. M. Itoh, Nano Lett. 12, 2083 (2012).

    Article  ADS  Google Scholar 

  96. H. J. Mamin, M. Kim, M. H. Sherwood, C. T. Rettner, K. Ohno, D. D. Awschalom, and D. Rugar, Science 339, 557 (2013).

    Article  ADS  Google Scholar 

  97. N. Bar-Gill, L. M. Pham, A. Jarmola, D. Budker, and R. L. Walsworth, Nat. Commun. 4, 1743 (2013), arXiv: 1211.7094.

    Article  ADS  Google Scholar 

  98. P. Ovartchaiyapong, K. W. Lee, B. A. Myers, and A. C. B. Jayich, Nat. Commun. 5, 4429 (2014), arXiv: 1403.4173.

    Article  ADS  Google Scholar 

  99. B. Z. Rameshti, S. V. Kusminskiy, J. A. Haigh, K. Usami, D. Lachance-Quirion, Y. Nakamura, C.-M. Hu, H. X. Tang, G. E. Bauer, and Y. M. Blanter, Phys. Rep. 979, 1 (2022).

    Article  MathSciNet  ADS  Google Scholar 

  100. L. Planat, A. Ranadive, R. Dassonneville, J. Puertas Martínez, S. Léger, C. Naud, O. Buisson, W. Hasch-Guichard, D. M. Basko, and N. Roch, Phys. Rev. X 10, 021021 (2020), arXiv: 1907.10158.

    Google Scholar 

  101. J. Grebel, A. Bienfait, E. Dumur, H. S. Chang, M. H. Chou, C. R. Conner, G. A. Peairs, R. G. Povey, Y. P. Zhong, and A. N. Cleland, Appl. Phys. Lett. 118, 142601 (2021).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hui Jing or Le-Man Kuang.

Ethics declarations

Conflict of interest The authors declare that they have no conflict of interest.

Additional information

This work was supported by the National Natural Science Foundation of China (Grant Nos. 12205256, 12304407, 11935006, 11774086, 12247105, and 1217050862), the Henan Provincial Science and Technology Research Project (Grant Nos. 232102221001, and 232102210175), the HNQSTIT project (Grant No. 2022112), the Fundamental Research Funds for the Central Universities (Grant No. 2023FRFK06012), and the China Postdoctoral Science Foundation (Grant No. 2023TQ0310).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhang, HL., Wu, JL. et al. Quantum parametric amplification of phonon-mediated magnon-spin interaction. Sci. China Phys. Mech. Astron. 66, 110311 (2023). https://doi.org/10.1007/s11433-023-2180-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-023-2180-x

Navigation