Skip to main content

Phonon-Electron-Nuclear Spin Hybrid Systems in an Electromechanical Resonator

  • Chapter
  • First Online:
Hybrid Quantum Systems

Part of the book series: Quantum Science and Technology ((QST))

  • 1048 Accesses

Abstract

A recent progress on hybrid systems with a GaAs-based electromechanical resonator is reviewed. Fundamental experimental techniques including fabrication of an electromechanical resonator integrated with a GaAs heterostructure and transport measurements using a cryogenic amplifier are explained. The first topic is on a hybrid system composed of a gate-tunable quantum dot (QD) and quantum point contact (QPC) integrated into a piezoelectricity-based electromechanical resonator. The piezoelectric coupling between them enables us to detect milli-Kelvin phonon states via current flowing through the QD/QPC. Noise analysis based on an equivalent circuit elucidates that the displacement sensitivity is amplifier-limited and the estimated intrinsic sensitivity with a QD transducer potentially reaches the zero-point motion of the resonator. The second topic is on quadrupole-coupling between electrically tunable phonon states in an electromechanical resonator and a nuclear spin ensemble within it. As a consequence of a rapidly oscillating strain induced by a strongly driven mechanical resonator, nuclear magnetic resonance (NMR) frequency shifts which can be regarded as mechanical analogue of ac-Stark shift known in cavity quantum electrodynamics is observed. This prototype system potentially opens up quantum state engineering for electrons, phonons, and nuclear spins such as coherent coupling between them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Y. Okazaki, I. Mahboob, K. Onomitsu, S. Sasaki, H. Yamaguchi, Appl. Phys. Lett. 103, 192105 (2013)

    Google Scholar 

  2. Y. Okazaki, I. Mahboob, K. Onomitsu, S. Sasaki, H. Yamaguchi, Nat. Commun. 7, 11132 (2016)

    Article  ADS  Google Scholar 

  3. Y. Okazaki, I. Mahboob, K. Onomitsu, S. Sasaki, S. Nakamura, N.-H. Kaneko, H. Yamaguchi, Nat. Commun. 9, 2993 (2018)

    Article  ADS  Google Scholar 

  4. K.L. Ekinci, M.L. Roukes, Nanoelectromechanical systems. Rev. Sci. Instrum. 76, 061101 (2005)

    Google Scholar 

  5. A.N. Cleland, Foundations of Nanomechanics (Springer, 2003)

    Google Scholar 

  6. M.D. LaHaye, O. Buu, B. Camarota, K.C. Schwab, Science 304, 74–77 (2004)

    Article  ADS  Google Scholar 

  7. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T.J. Kippenberg, Nature 482, 63–67 (2012)

    Article  ADS  Google Scholar 

  8. T.A. Palomaki, J.D. Teufel, R.W. Simmonds, K.W. Lehnert, Science 342, 710–713 (2013)

    Article  ADS  Google Scholar 

  9. R. Riedinger et al., Nature 530, 313–316 (2016)

    Article  ADS  Google Scholar 

  10. R. Riedinger et al., Nature 556, 473–477 (2018)

    Article  ADS  Google Scholar 

  11. C.F. Ockeloen-Korppi et al., Stabilized entanglement of massive mechanical oscillators. Nature 556, 478–482 (2018)

    Article  ADS  Google Scholar 

  12. A.D. O’Connell et al., Nature 464, 697–703 (2010)

    Article  ADS  Google Scholar 

  13. E. Verhagen, S. Deléglise, S. Weis, A. Schliesser, T.J. Kippenberg, Nature 482, 63-67 (2012)

    Google Scholar 

  14. J.D. Cohen et al., Nature 520, 522–525 (2015)

    Article  ADS  Google Scholar 

  15. A. Schliesser, O. Arcizet, R. Rivière, G. Anetsberger, T.J. Kippenberg, Nat. Phys. 5, 509–514 (2009)

    Article  Google Scholar 

  16. J.D. Teufel et al., Nature 475, 359–363 (2011)

    Article  ADS  Google Scholar 

  17. C.H. Metzger, K. Karrai, Nature 432, 1002–1005 (2004)

    Article  ADS  Google Scholar 

  18. M. Aspelmeyer, T.J. Kippenberg, F. Marquardt, Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  ADS  Google Scholar 

  19. J.D. Teufel, T. Donner, M.A. Castellanos-Beltran, J.W. Harlow, K.W. Lehnert, Nat. Nanotechnol. 4, 820 (2009)

    Article  ADS  Google Scholar 

  20. R.G. Knobel, A.N. Cleland, Nature 424, 291–293 (2003)

    Article  ADS  Google Scholar 

  21. M.D. LaHaye, J. Suh, P.M. Echternach, K.C. Schwab, M.L. Roukes, Nature 459, 960–964 (2009)

    Article  ADS  Google Scholar 

  22. S. Etaki, M. Poot, I. Mahboob, K. Onomitsu, H. Yamaguchi, H.S.J. van der Zant, Nat. Phys. 4, 785 (2008)

    Article  Google Scholar 

  23. A.D. Armour, M.P. Blencowe, Y. Zhang, Phys. Rev. B 69, 125313 (2004)

    Google Scholar 

  24. M.P. Blencowe, J. Imbers, A.D. Armour, New J. Phys. 7, 236 (2005)

    Article  ADS  Google Scholar 

  25. I.S. Grudinin, H. Lee, O. Painter, K.J. Vahala, Phys. Rev. Lett. 104, 083901 (2010)

    Google Scholar 

  26. R.P. Beardsley, A.V. Akimov, M. Henini, A.J. Kent, Phys. Rev. Lett. 104, 085501 (2010)

    Google Scholar 

  27. J. Gardner, S.D. Bennett, A.A. Clerk, Phys. Rev. B 84, 205316 (2011)

    Google Scholar 

  28. R. Okuyama, M. Eto, T. Brandes, J. Phys. Soc. Jpn. 82, 013704 (2013)

    Google Scholar 

  29. A. Khaetskii, V. N. Golovach, X. Hu, I. Žutić, Phys. Rev. Lett. 111, 186601 (2013)

    Google Scholar 

  30. I. Mahboob, K. Nishiguchi, A. Fujiwara, H. Yamaguchi, Phys. Rev. Lett. 110, 127202 (2013)

    Google Scholar 

  31. J. Kabuss, A. Carmele, T. Brandes, A. Knorr, Phys. Rev. Lett. 109, 054301 (2012)

    Google Scholar 

  32. A. Naik et al., Nature 443, 193–196 (2006)

    Article  ADS  Google Scholar 

  33. G.A. Steele et al., Science 325, 1103–1107 (2009)

    Article  ADS  Google Scholar 

  34. S.N. Shevchenko, D.G. Rubanov, F. Nori, Phys. Rev. B 91, 165422 (2015)

    Google Scholar 

  35. A.N. Cleland, J.S. Aldridge, D.C. Driscoll, A.C. Gossard, Appl. Phys. Lett. 81, 1699 (2002)

    Article  ADS  Google Scholar 

  36. E.M. Weig et al., Phys. Rev. Lett. 92, 046804 (2004)

    Google Scholar 

  37. J. Stettenheim et al., Nature 466, 86–90 (2010)

    Article  ADS  Google Scholar 

  38. I. Mahboob, K. Nishiguchi, H. Okamoto, H. Yamaguchi, Nat. Phys. 8, 387–392 (2012)

    Article  Google Scholar 

  39. J.-M. Pirkkalainen, S.U. Cho, J. Li, G.S. Paraoanu, P.J. Hakonen, M.A. Sillanpää, Nature 494, 211–215 (2013)

    Article  ADS  Google Scholar 

  40. A. Wallraff et al., Nature 431, 162–167 (2004)

    Article  ADS  Google Scholar 

  41. M. Boissonneault, J.A. Gambetta, A. Blais, Phys. Rev. A 79, 013819 (2009)

    Google Scholar 

  42. D.I. Schuster et al., Phys. Rev. Lett. 94, 123602 (2005)

    Google Scholar 

  43. Y. Tsaturyan, A. Barg, E.S. Polzik, A. Schliesser, Nat. Nanotechnol. 12, 776–783 (2017)

    Article  Google Scholar 

  44. A.H. Ghadimi et al., Science 360, 764–768 (2018)

    Article  MathSciNet  Google Scholar 

  45. D.I. Bolef, R.K. Sundfors, Nuclear Acoustic Resonance (Academic Press, CA, 1993)

    Google Scholar 

  46. R.K. Sundfors, Phys. Rev. 185, 458–472 (1969)

    Article  ADS  Google Scholar 

  47. J. Ma, X. Wang, C.P. Sun, F. Nori, Phys. Rep. 509, 89–165 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  48. S.A. Dooley et al., New. J. Phys. 18, 053011 (2016)

    Google Scholar 

  49. V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. N\(\ddot{u}\)bler, M. Dolev, J. Crystal Growth 311, 1658-1661 (2009)

    Google Scholar 

  50. K. Fricke, J. Appl. Phys. 70, 914 (1991)

    Article  ADS  Google Scholar 

  51. S.C. Masmanidis et al., Science 317, 780–783 (2007)

    Article  ADS  Google Scholar 

  52. L. Roschier, P. Hakonen, Cryogenics 44, 783 (2004)

    Article  ADS  Google Scholar 

  53. N. Okuhanski, E. Hoenig, Appl. Phys. Lett. 85, 2956 (2004)

    Article  ADS  Google Scholar 

  54. I.T. Vink, T. Nooitgedagt, R.N. Schouten, L.M.K. Vandersypen, W. Wegscheider, Appl. Phys. Lett. 91, 123512 (2007)

    Google Scholar 

  55. L. DiCarlo, Y. Zhang, D.T. McClure, C.M. Marcus, L.N. Pfeiffer, K.W. West, Rev. Sci. Instrum. 77, 073906 (2006)

    Google Scholar 

  56. M. Hashisaka, Y. Yamauchi, S. Nakamura, S. Kasai, K. Kobayashi, T. Ono, J. Phys.: Conf. Ser. 109, 012013 (2008)

    Google Scholar 

  57. Y. Okazaki, S. Sasaki, K. Muraki, Phys. Rev. B 87, 041302(R) (2013)

    Article  ADS  Google Scholar 

  58. B. Razavi, Design of Analog CMOS Integrated (McGraw-Hill Companies, 2003)

    Google Scholar 

  59. R. de-Picciotto, M. Reznikov, M. Heiblum, V. Umansky, G. Bunin, D. Mahalu, Nature 389, 162 (1997)

    Google Scholar 

  60. C.M. Caves, K.S. Thorne, W.P. Drever, V.D. Sandberg, N. Zimmermann, Rev. Mod. Phys. 52, 341–392 (1980)

    Article  ADS  Google Scholar 

  61. C.M. Caves, Phys. Rev. D 26, 1817–1839 (1981)

    Article  ADS  Google Scholar 

  62. Ya.. M. Blanter, M. Buttiker, Phys. Rep. 336, 1 (2000)

    Article  ADS  Google Scholar 

  63. N.T.M. Tran, Y. Okazaki, S. Nakamura, M. Ortolano, N.-H. Kaneko, Jpn. J. Appl. Phys. 56, 04CK10 (2017)

    Google Scholar 

  64. M.H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2015)

    Google Scholar 

  65. Y. Hirayama, G. Yusa, K. Hashimoto, N. Kumada, T. Ota, K. Muraki, Semicond. Sci. Technol. 24, 023001 (2009)

    Google Scholar 

  66. R.K. Sundfors, Phys. Rev. B 10, 4244 (1974)

    Article  ADS  Google Scholar 

  67. M. Ono, J. Ishihara, G. Sato, S. Matsuzaka, Y. Ohno, H. Ohno, Phys. Rev. B 89, 115308 (2014)

    Google Scholar 

  68. E.A. Chekhovich, M.N. Makhonin, A.I. Tartakovskii, A. Yacoby, H. Bluhm, K.C. Nowack, L.M.K. Vandersypen, Nat. Mater. 12, 494–504 (2013)

    Article  ADS  Google Scholar 

  69. R.I. Dzhioev, V.L. Korenev, Phys. Rev. Lett. 99, 037401 (2007)

    Google Scholar 

  70. P. Maletinsky, M. Kroner, A. Imamoglu, Nat. Phys. 5, 407–411 (2009)

    Article  Google Scholar 

  71. E.A. Chekhovich et al., Nat. Nanotechnol. 7, 646–650 (2012)

    Article  ADS  Google Scholar 

  72. C. Bulutay, Phys. Rev. B 85, 115313 (2012)

    Google Scholar 

  73. E.A. Chekhovich, M. Hopkinson, M.S. Skolnick, A.I. Tartakovskii, Nat. Commun. 6, 6348 (2015)

    Article  ADS  Google Scholar 

  74. D.J. Guerrier, R.T. Harley, Appl. Phys. Lett. 70, 1739–1741 (1997)

    Article  ADS  Google Scholar 

  75. G. Salis, D.T. Fuchs, J.M. Kikkawa, D.D. Awschalom, Y. Ohno, H. Ohno, Phys. Rev. Lett. 86, 2677–2680 (2001)

    Article  ADS  Google Scholar 

  76. M. Eickhoff, B. Lenzmann, D. Suter, S.E. Hayes, A.D. Wieck, Phys. Rev. B 67, 085308 (2003)

    Google Scholar 

  77. M. Poggio, D.D. Awschalom, Appl. Phys. Lett. 86, 182103 (2005)

    Google Scholar 

  78. H. Knotz, A.W. Holleitner, J. Stephens, R. Myers, D.D. Awschalom, Appl. Phys. Lett. 88, 241918 (2006)

    Google Scholar 

  79. Y. Kondo, M. Ono, S. Matsuzaka, K. Morita, H. Sanada, Y. Ohno, H. Ohno, Phys. Rev. Lett. 101, 207601 (2008)

    Google Scholar 

  80. M. Kawamura et al., Appl. Phys. Lett. 96, 032102 (2010)

    Google Scholar 

  81. M. Ono, J. Ishihara, G. Sato, Y. Ohno, H. Ohno, Appl. Phys. Express 6, 033002 (2013)

    Google Scholar 

  82. D.P. Franke, F.M. Hrubesch, M. Künzl, H.-W. Becker, K.M. Itoh, M. Stutzmann, F. Hoehne, L. Dreher, M.S. Brandt, Phys. Rev. Lett. 115, 057601 (2015)

    Google Scholar 

  83. Hideo Sambe, Phys. Rev. A 7, 2203 (1973)

    Article  ADS  Google Scholar 

  84. K. Beloy, Dissertation, University of Nevada, 2009

    Google Scholar 

  85. T. Machida, T. Yamazaki, K. Ikushima, S. Komiyama, Appl. Phys. Lett. 82, 409 (2003)

    Article  ADS  Google Scholar 

  86. G. Yusa, K. Muraki, K. Takashina, K. Hashimoto, Y. Hirayama, Nature 434, 1001 (2005)

    Article  ADS  Google Scholar 

  87. A. Husain, J. Hone, H.WCh. Postma, X.M.H. Huang, T. Drake, M. Barbic, A. Scherer, M.L. Roukes, Appl. Phys. Lett. 83, 1240–1242 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Chida, M. Eto, N. Lambert, I. Mahboob, Y. Matsuzaki, G. J. Milburn, W. J. Munro, R. Okuyama, M. Ono, K. Onomitsu, S. Sasaki, S. Shevchenko, and Y. Tokura for fruitful discussions. The authors acknowledge the financial support from Grant-in-Aid for Scientific Research on Innovative Areas No. JP15H05869.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuma Okazaki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okazaki, Y., Yamaguchi, H. (2021). Phonon-Electron-Nuclear Spin Hybrid Systems in an Electromechanical Resonator. In: Hirayama, Y., Ishibashi, K., Nemoto, K. (eds) Hybrid Quantum Systems. Quantum Science and Technology. Springer, Singapore. https://doi.org/10.1007/978-981-16-6679-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-6679-7_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-6678-0

  • Online ISBN: 978-981-16-6679-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics