Skip to main content
Log in

Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5

  • Article
  • Editor’s Focus
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

Recently, competing electronic instabilities, including superconductivity and density-wave-like order, have been discovered in vanadium-based kagome metals AV3Sb5 (A = K, Rb, Cs) with a nontrivial band topology. This finding stimulates considerable interest to study the interplay of these competing electronic orders and possible exotic excitations in the superconducting state. Here, we performed 51V and 133Cs nuclear magnetic resonance (NMR) measurements on a CsV3Sb5 single crystal to clarify the nature of density-wave-like transition in these kagome superconductors. A first-order structural transition is unambiguously revealed below Ts ∼ 94 K by observing the sudden splitting of Knight shift in 51V NMR spectrum. Moreover, combined with 133Cs NMR spectrum, the present result confirms a three-dimensional structural modulation. By further analyzing the anisotropy of Knight shift and 1/T1T at 51V nuclei, we proposed that the orbital order is the primary electronic order induced by the first-order structural transition, which is supported by further analysis on electric field gradient at 51V nuclei. In addition, the evidence for possible orbital fluctuations is also revealed above Ts. The present work sheds light on a rich orbital physics in kagome superconductors AV3Sb5.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Ran, M. Hermele, P. A. Lee, and X. G. Wen, Phys. Rev. Lett. 98, 117205 (2007).

    Article  ADS  Google Scholar 

  2. W. H. Ko, P. A. Lee, and X. G. Wen, Phys. Rev. B 79, 214502 (2009).

    Article  ADS  Google Scholar 

  3. S. L. Yu, and J. X. Li, Phys. Rev. B 85, 144402 (2012).

    Article  ADS  Google Scholar 

  4. M. L. Kiesel, C. Platt, and R. Thomale, Phys. Rev. Lett. 110, 126405 (2013).

    Article  ADS  Google Scholar 

  5. W. S. Wang, Z. Z. Li, Y. Y. Xiang, and Q. H. Wang, Phys. Rev. B 87, 115135 (2013).

    Article  ADS  Google Scholar 

  6. J. Wen, A. Rüegg, C. C. J. Wang, and G. A. Fiete, Phys. Rev. B 82, 075125 (2010).

    Article  ADS  Google Scholar 

  7. S. Nakatsuji, N. Kiyohara, and T. Higo, Nature 527, 212 (2015).

    Article  ADS  Google Scholar 

  8. K. Kuroda, T. Tomita, M. T. Suzuki, C. Bareille, A. A. Nugroho, P. Goswami, M. Ochi, M. Ikhlas, M. Nakayama, S. Akebi, R. Noguchi, R. Ishii, N. Inami, K. Ono, H. Kumigashira, A. Varykhalov, T. Muro, T. Koretsune, R. Arita, S. Shin, T. Kondo, and S. Nakatsuji, Nat. Mater. 16, 1090 (2017).

    Article  ADS  Google Scholar 

  9. L. Ye, M. Kang, J. Liu, F. von Cube, C. R. Wicker, T. Suzuki, C. Jozwiak, A. Bostwick, E. Rotenberg, D. C. Bell, L. Fu, R. Comin, and J. G. Checkelsky, Nature 555, 638 (2018).

    Article  ADS  Google Scholar 

  10. E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S. Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S. T. B. Goennenwein, and C. Felser, Nat. Phys. 14, 1125 (2018).

    Article  Google Scholar 

  11. J. X. Yin, S. S. Zhang, H. Li, K. Jiang, G. Chang, B. Zhang, B. Lian, C. Xiang, I. Belopolski, H. Zheng, T. A. Cochran, S. Y. Xu, G. Bian, K. Liu, T. R. Chang, H. Lin, Z. Y. Lu, Z. Wang, S. Jia, W. Wang, and M. Z. Hasan, Nature 562, 91 (2018).

    Article  ADS  Google Scholar 

  12. Q. Wang, Y. Xu, R. Lou, Z. Liu, M. Li, Y. Huang, D. Shen, H. Weng, S. Wang, and H. Lei, Nat. Commun. 9, 3681 (2018).

    Article  ADS  Google Scholar 

  13. Z. Lin, J. H. Choi, Q. Zhang, W. Qin, S. Yi, P. Wang, L. Li, Y. Wang, H. Zhang, Z. Sun, L. Wei, S. Zhang, T. Guo, Q. Lu, J. H. Cho, C. Zeng, and Z. Zhang, Phys. Rev. Lett. 121, 096401 (2018).

    Article  ADS  Google Scholar 

  14. M. Kang, L. Ye, S. Fang, J. S. You, A. Levitan, M. Han, J. I. Facio, C. Jozwiak, A. Bostwick, E. Rotenberg, M. K. Chan, R. D. McDonald, D. Graf, K. Kaznatcheev, E. Vescovo, D. C. Bell, E. Kaxiras, J. van den Brink, M. Richter, M. Prasad Ghimire, J. G. Checkelsky, and R. Comin, Nat. Mater. 19, 163 (2020).

    Article  ADS  Google Scholar 

  15. J. X. Yin, W. Ma, T. A. Cochran, X. Xu, S. S. Zhang, H. J. Tien, N. Shumiya, G. Cheng, K. Jiang, B. Lian, Z. Song, G. Chang, I. Belopolski, D. Multer, M. Litskevich, Z. J. Cheng, X. P. Yang, B. Swidler, H. Zhou, H. Lin, T. Neupert, Z. Wang, N. Yao, T. R. Chang, S. Jia, and M. Zahid Hasan, Nature 583, 533 (2020).

    Article  ADS  Google Scholar 

  16. Y. Xing, J. Shen, H. Chen, L. Huang, Y. Gao, Q. Zheng, Y. Y. Zhang, G. Li, B. Hu, G. Qian, L. Cao, X. Zhang, P. Fan, R. Ma, Q. Wang, Q. Yin, H. Lei, W. Ji, S. Du, H. Yang, W. Wang, C. Shen, X. Lin, E. Liu, B. Shen, Z. Wang, and H. J. Gao, Nat. Commun. 11, 5613 (2020).

    Article  ADS  Google Scholar 

  17. H. M. Guo, and M. Franz, Phys. Rev. B 80, 113102 (2009).

    Article  ADS  Google Scholar 

  18. I. I. Mazin, H. O. Jeschke, F. Lechermann, H. Lee, M. Fink, R. Thomale, and R. Valentí, Nat. Commun. 5, 4261 (2014).

    Article  ADS  Google Scholar 

  19. D. F. Liu, A. J. Liang, E. K. Liu, Q. N. Xu, Y. W. Li, C. Chen, D. Pei, W. J. Shi, S. K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L. X. Yang, Z. K. Liu, S. S. P. Parkin, C. Felser, and Y. L. Chen, Science 365, 1282 (2019).

    Article  ADS  Google Scholar 

  20. I. Belopolski, K. Manna, D. S. Sanchez, G. Chang, B. Ernst, J. Yin, S. S. Zhang, T. Cochran, N. Shumiya, H. Zheng, B. Singh, G. Bian, D. Multer, M. Litskevich, X. Zhou, S. M. Huang, B. Wang, T. R. Chang, S. Y. Xu, A. Bansil, C. Felser, H. Lin, and M. Z. Hasan, Science 365, 1278 (2019).

    Article  ADS  Google Scholar 

  21. N. Morali, R. Batabyal, P. K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, and H. Beidenkopf, Science 365, 1286 (2019).

    Article  ADS  Google Scholar 

  22. B. R. Ortiz, L. C. Gomes, J. R. Morey, M. Winiarski, M. Bordelon, J. S. Mangum, I. W. H. Oswald, J. A. Rodriguez-Rivera, J. R. Neilson, S. D. Wilson, E. Ertekin, T. M. McQueen, and E. S. Toberer, Phys. Rev. Mater. 3, 094407 (2019).

    Article  Google Scholar 

  23. B. R. Ortiz, S. M. L. Teicher, Y. Hu, J. L. Zuo, P. M. Sarte, E. C. Schueller, A. M. M. Abeykoon, M. J. Krogstad, S. Rosenkranz, R. Osborn, R. Seshadri, L. Balents, J. He, and S. D. Wilson, Phys. Rev. Lett. 125, 247002 (2020).

    Article  ADS  Google Scholar 

  24. B. R. Ortiz, P. M. Sarte, E. M. Kenney, M. J. Graf, S. M. L. Teicher, R. Seshadri, and S. D. Wilson, Phys. Rev. Mater. 5, 034801 (2021).

    Article  Google Scholar 

  25. Q. Yin, Z. Tu, C. Gong, Y. Fu, S. Yan, and H. Lei, Chin. Phys. Lett. 38, 037403 (2021).

    Article  ADS  Google Scholar 

  26. Y. X. Jiang, J. X. Yin, M. M. Denner, N. Shumiya, B. R. Ortiz, G. Xu, Z. Guguchia, J. He, M. S. Hossain, X. Liu, J. Ruff, L. Kautzsch, S. S. Zhang, G. Chang, I. Belopolski, Q. Zhang, T. A. Cochran, D. Multer, M. Litskevich, Z. J. Cheng, X. P. Yang, Z. Wang, R. Thomale, T. Neupert, S. D. Wilson, and M. Z. Hasan, Nat. Mater. 20, 1353 (2021).

    Article  ADS  Google Scholar 

  27. Z. Liang, X. Hou, F. Zhang, W. Ma, P. Wu, Z. Zhang, F. Yu, J. J. Ying, K. Jiang, L. Shan, Z. Wang, and X. H. Chen, Phys. Rev. X 11, 031026 (2021).

    Google Scholar 

  28. H. Li, T. T. Zhang, T. Yilmaz, Y. Y. Pai, C. E. Marvinney, A. Said, Q. W. Yin, C. S. Gong, Z. J. Tu, E. Vescovo, C. S. Nelson, R. G. Moore, S. Murakami, H. C. Lei, H. N. Lee, B. J. Lawrie, and H. Miao, Phys. Rev. X 11, 031050 (2021).

    Google Scholar 

  29. H. Tan, Y. Liu, Z. Wang, and B. Yan, Phys. Rev. Lett. 127, 046401 (2021).

    Article  ADS  Google Scholar 

  30. X. Feng, K. Jiang, Z. Wang, and J. Hu, Sci. Bull. 66, 1384 (2021).

    Article  Google Scholar 

  31. H. Zhao, H. Li, B. R. Ortiz, S. M. L. Teicher, T. Park, M. Ye, Z. Wang, L. Balents, S. D. Wilson, and I. Zeljkovic, arXiv: 2103.03118.

  32. H. Chen, H. Yang, B. Hu, Z. Zhao, J. Yuan, Y. Xing, G. Qian, Z. Huang, G. Li, Y. Ye, S. Ma, S. Ni, H. Zhang, Q. Yin, C. Gong, Z. Tu, H. Lei, H. Tan, S. Zhou, C. Shen, X. Dong, B. Yan, Z. Wang, and H. J. Gao, Nature 599, 222 (2021).

    Article  ADS  Google Scholar 

  33. C. C. Zhao, L. S. Wang, W. Xia, Q. W. Yin, J. M. Ni, Y. Y. Huang, C. P. Tu, Z. C. Tao, Z. J. Tu, C. S. Gong, H. C. Lei, Y. F. Guo, X. F. Yang, and S. Y. Li, arXiv: 2102.08356.

  34. K. Y. Chen, N. N. Wang, Q. W. Yin, Y. H. Gu, K. Jiang, Z. J. Tu, C. S. Gong, Y. Uwatoko, J. P. Sun, H. C. Lei, J. P. Hu, and J. G. Cheng, Phys. Rev. Lett. 126, 247001 (2021).

    Article  ADS  Google Scholar 

  35. X. Chen, X. Zhan, X. Wang, J. Deng, X. B. Liu, X. Chen, J. G. Guo, and X. Chen, Chin. Phys. Lett. 38, 057402 (2021).

    Article  ADS  Google Scholar 

  36. Z. Zhang, Z. Chen, Y. Zhou, Y. Yuan, S. Wang, J. Wang, H. Yang, C. An, L. Zhang, X. Zhu, Y. Zhou, X. Chen, J. Zhou, and Z. Yang, Phys. Rev. B 103, 224513 (2021).

    Article  ADS  Google Scholar 

  37. F. Du, S. Luo, B. R. Ortiz, Y. Chen, W. Duan, D. Zhang, X. Lu, S. D. Wilson, Y. Song, and H. Yuan, Phys. Rev. B 103, L220504 (2021).

  38. Y. Tokura, and N. Nagaosa, Science 288, 462 (2000).

    Article  ADS  Google Scholar 

  39. S. V. Streltsov, and D. I. Khomskii, Phys.-Uspekhi 60, 1121 (2017).

    Article  ADS  Google Scholar 

  40. P. P. Man, in Quadrupole Interaction: Encyclopedia of Nuclear Magnetic Resonance Vol. 6, edited by D. M. Grant, and R. K. Harris (John Wiley and Sons, Chichester, 1996), pp. 3838–3848.

  41. B. R. Ortiz, S. M. L. Teicher, L. Kautzsch, P. M. Sarte, N. Ratcliff, J. Harter, J. P. C. Ruff, R. Seshadri, and S. D. Wilson, Phys. Rev. X 11, 041030 (2021).

    Google Scholar 

  42. C. Mu, Q. Yin, Z. Tu, C. Gong, H. Lei, Z. Li, and J. Luo, Chin. Phys. Lett. 38, 077402 (2021).

    Article  ADS  Google Scholar 

  43. E. M. Kenney, B. R. Ortiz, C. Wang, S. D. Wilson, and M. J. Graf, J. Phys.-Condens. Matter 33, 235801 (2021).

    Article  ADS  Google Scholar 

  44. P. D. Johnson, G. Xu, and W. G. Yin, Iron-based Superconductivity, Vol. 211 (Springer, Berlin, 2015).

    Book  Google Scholar 

  45. W. E. Pickett, Rev. Mod. Phys. 61, 433 (1989).

    Article  ADS  Google Scholar 

  46. T. Kiyama, T. Shiraoka, M. Itoh, L. Kano, H. Ichikawa, and J. Akimitsu, Phys. Rev. B 73, 184422 (2006).

    Article  ADS  Google Scholar 

  47. T. Suzuki, I. Yamauchi, M. Itoh, T. Yamauchi, and Y. Ueda, Phys. Rev. B 73, 224421 (2006).

    Article  ADS  Google Scholar 

  48. T. Jin-no, Y. Shimizu, M. Itoh, S. Niitaka, and H. Takagi, Phys. Rev. B 87, 075135 (2013).

    Article  ADS  Google Scholar 

  49. Y. Shimizu, S. Aoyama, T. Jinno, M. Itoh, and Y. Ueda, Phys. Rev. Lett. 114, 166403 (2015).

    Article  ADS  Google Scholar 

  50. I. Yamauchi, M. Itoh, T. Yamauchi, J. I. Yamaura, and Y. Ueda, Phys. Rev. B 96, 205114 (2017).

    Article  ADS  Google Scholar 

  51. Z. Wang, S. Ma, Y. Zhang, H. Yang, Z. Zhao, Y. Ou, Y. Zhu, S. Ni, Z. Lu, H. Chen, K. Jiang, L. Yu, Y. Zhang, X. Dong, J. P. Hu, H. J. Gao, and Z. X Zhao, arXiv: 2104.05556.

  52. D. W. Song, J. Li, D. Zhao, L. K. Ma, L. X. Zheng, S. J. Li, L. P. Nie, X. G. Luo, Z. P. Yin, T. Wu, and X. H. Chen, Phys. Rev. B 98, 235142 (2018).

    Article  ADS  Google Scholar 

  53. T. Wu, H. Mayaffre, S. Krämer, M. Horvatić, C. Berthier, W. N. Hardy, R. Liang, D. A. Bonn, and M. H. Julien, Nature 477, 191 (2011).

    Article  ADS  Google Scholar 

  54. Y. Hu, S. M. Teicher, B. R. Ortiz, Y. Luo, S. Peng, L. Huai, J. Z. Ma, N. C. Plumb, S. D. Wilson, J. F. He, and M. Shi, arXiv: 2104.12725.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wu or XianHui Chen.

Additional information

This work was supported by the National Key R&D Program of China (Grant Nos. 2017YFA0303000, and 2016YFA0300201), the National Natural Science Foundation of China (Grant Nos. 11888101, and 12034004), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000), the Anhui Initiative in Quantum Information Technologies (Grant No. AHY160000), and the Collaborative Innovation Program of Hefei Science Center, CAS (Grant No. 2019HSCCIP007). We thank the valuable discussion with YiLin Wang, Gang Chen, and JunFeng He.

Supporting Information

The supporting information is available online at http://phys.scichina.com and https://link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supplementary Material for

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, D., Zheng, L., Yu, F. et al. Orbital ordering and fluctuations in a kagome superconductor CsV3Sb5. Sci. China Phys. Mech. Astron. 65, 247462 (2022). https://doi.org/10.1007/s11433-021-1826-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1826-1

Navigation